
Abusing Trust: Mobile Kernel Subversion via
TrustZone Rootkits

Daniel Marth∗†, Clemens Hlauschek∗†, Christian Schanes∗†, Thomas Grechenig†∗
∗RISE – Research Industrial Systems Engineering GmbH

†Research group for Industrial Software, TU Wien
{daniel.marth, clemens.hlauschek, christian.schanes, thomas.grechenig}@inso.tuwien.ac.at

Abstract—The Arm TrustZone is the de facto standard for
hardware-backed Trusted Execution Environments (TEEs) on
mobile devices, providing isolation for secure computations to
be shielded from the normal world, and thus from the rest
of the system. Most real-world TEEs are proprietary, difficult-
to-inspect, and notoriously insecure: In the past years, it has
been demonstrated over and over again that TEEs of millions
of devices worldwide, and the Trusted Applications (TAs) they
harbor, are often vulnerable to attacks such as control flow
hijacking. Not only do we have to trust these TEEs to provide
a secure environment for TAs such as keystore and Digital
Rights Management (DRM), code running in the secure world
provided by the Arm TrustZone also has full access to the
memory of the regular operating system (OS). Since Thomas
Roth first proposed a TrustZone-based rootkit in 2013, progress
regarding such rootkits seems to have stalled in the offensive
research community. The biggest challenge for TrustZone rootkits
is that no interpretation of normal world memory is available in
the secure world. Automated reverse engineering of kernel data
structures at runtime is one way to implement rootkit functions.
We present mechanisms to engineer the interpretation of Linux
kernel memory for malicious subversion and the circumvention of
basic protection mechanisms from the secure world. We provide
a fully working proof-of-concept rootkit located in the Arm
TrustZone to demonstrate the proposed mechanisms. We evaluate
and show compatibility of the rootkit across different versions of
the Linux kernel despite changing data structures. Our results
highlight the feasibility of TrustZone rootkits that potentially
survive kernel updates and raise awareness about the real danger
of having to put trust into unvetted proprietary vendor code,
which, as we show, can easily be abused.

I. INTRODUCTION

Digitization rapidly changed our everyday lives over the
past years. Computers became omnipresent and found their
way into many professional and private fields. With the rise of
smartphones, this trend is continued and even accelerated [1].
Social networks and instant messaging applications foster the
revelation of private information [2], [3]. Being connected
to the physical world via cameras, microphones and other
sensors, mobile devices are able to handle not only digital but
also physical information [4]. Hence, smartphones are valuable
devices that need to be protected from increasingly widespread
malicious software [5].

To effectively protect crucial system components against
advanced malware such as rootkits, these components are com-
monly isolated from the conventional Operating System (OS)
by making use of specific hardware features [6]. Hardware-

assisted Isolated Execution Environments (HIEEs) act on a low
hardware level and are equipped with high privileges on the
machine. In case of a compromised vendor or a vulnerability in
the implementation of the environment, they provide excellent
preconditions for the deployment of rootkits [6]–[8].

Modern Arm processors support an isolation concept called
“TrustZone”. Next to the normal execution environment the
user controls (“normal world”), the TrustZone provides a pro-
tected execution environment (“secure world”). A processor
supporting Arm TrustZone is able to run a minimal OS in
the secure world that offers services in the form of “Trusted
Applications (TAs)” to the normal world. Confidential data and
algorithms may be utilized without being directly accessible to
the normal world potentially running malicious software. TAs
are, for example, used to handle sensitive user data such as
passwords or support Digital Rights Management (DRM) [9].

Several security mechanisms are in place to protect the
TrustZone from running unauthenticated code [10], [11]. Still,
a compromised vendor or an actively exploited vulnerability
could enable malicious software to be executed in the secure
world. Reports showed that it is possible to reverse engineer
proprietary implementations of the TrustZone and exploit
vulnerabilities to execute arbitrary code in the context of the
secure world on real-world devices [12]–[16].

According to the specification of the Armv8-A processor
architecture, the secure world has access to the normal world
address space [17]. Existing publications pointed out that this
property may be abused by malicious software, but described
the impact only rudimentarily [18], [19]. Technologies on
other processor architectures with comparable privileges were
proven to support the installation of powerful rootkits [6], [7],
[20]–[22].

While the Arm TrustZone has full access to the normal
world memory, there is no interpretation of the contained
data available. Protection mechanisms such as Kernel Address
Space Layout Randomization (KASLR) and the randomization
of structure layouts turn the reliable identification of kernel
data structures into a non-trivial problem. Additionally, data
structures and implementation details might change between
Linux kernel versions [23]. Despite these technical challenges,
we show that it is possible to construct a partial interpretation
of the normal world memory. In this paper we use the term
“invariants” in a similar way as the authors of HyperLink [24]



to describe properties and behaviors of the OS that are unlikely
to change across different versions of the OS. Automated
reverse engineering techniques relying on invariants can be
used by rootkits to partially construct an interpretation of the
normal world memory and implement malicious functionality.

This paper makes the following contributions:
• Design of a rootkit architecture utilizing the secure world.
• Techniques to partially restore the interpretation of the

Linux kernel memory.
• A proof-of-concept Arm TrustZone rootkit that uses the

presented memory analysis techniques to implement a set
of useful rootkit functionalities.

Moreover, with the publication of this paper, we plan to
open source the code of our TrustZone-based rootkit so that
other researchers are able to build upon our work to explore
defenses and additional attacks without having to reinvent the
wheel.

II. BACKGROUND

Technical details about the Arm TrustZone as well as
OS internals are crucial foundations of this work. Following
subsections provide the necessary background for the contri-
butions presented in later sections.

A. Virtual Memory Management

Modern OSs use a mechanism called “virtual memory”.
Each process is simulated to have the whole theoretical address
space for itself. Memory accesses rely on virtual addresses in
virtual memory instead of physical addresses. The Memory
Management Unit (MMU) is responsible for translating mem-
ory accesses from virtual addresses to physical addresses [25].

Memory regions are managed in units of pages. Pages
have a fixed size corresponding to the memory translation
granule size. 4KB, 16KB and 64KB are sizes supported by
Armv8 [26], [27]. Linux provides a kernel compilation option
to set the page size [28].

Translation tables map the virtual to the physical address
space. Each table has the size of a page. Starting from a single
initial page table, multiple levels of translation tables are used
to convert virtual addresses to physical ones [27].

Blocks are larger page sizes supported on specific trans-
lation levels. If a section of the virtual address refers to a
memory block, all lower bits directly represent an offset within
the block [26], [27].

Armv8-A effectively uses up to 48 bits for addressing1. Bit
sections of virtual addresses are actually indices for translation
tables and the corresponding block or page address offset [26].
Fig. 1 shows the overall translation process of a virtual address
when using the 4KB memory translation granule size.

B. Linux Process Management

A process or task is a running program that is managed
by the kernel [25]. Internally, the Linux kernel uses the
task_struct structure to keep track of tasks. Fields of this
structure that are crucial for this work are described shortly.

1The Armv8.2-A extension optionally increases this limit to 52 bits [26].

Virtual
Address

Bits

0-11 Offset

12-20 L3 Table Page

21-29 L2 Table Block

30-38 L1 Table Block

39-47 L0 Table

Result

Fig. 1. Multi-level address translation according to the Armv8-A architecture
reference manual [26].

• comm: Name of the associated executable (limited to 16
characters).

• pid: Unix-like systems traditionally assign each process
a unique Process Identifier (PID). Linux assigns PIDs
starting at 0 and increments them for each new process
by 1.

• state: Current status of the process (e.g., ready, exe-
cuting).

• cred and real_cred: References to credentials of the
process determining its permissions.

Over the lifetime of a task, it will be assigned different
states by the kernel. Multiple tasks running simultaneously
on the same machine compete for resources such as Central
Processing Unit (CPU) time. Execution order is determined by
the OS’s scheduler component. In case a process is not sched-
uled indefinitely although it would be ready for execution, it
is starved of CPU time [29].

The credential fields cred and real_cred employ
the Read-Copy-Update (RCU) synchronization mechanism.
Through this pattern, each field can be updated by a sin-
gle source while still being available for consistent reading
operations without further synchronization mechanisms such
as locks [30]–[32]. Reference counting is used to efficiently
handle the allocation of instances [33].

Tasks are managed in a cyclic doubly linked list of
task_struct instances. A doubly linked list is a data
structure that is characterized by distinct elements having a
reference to its predecessor and successor [34].

Each task has a name stored in the comm structure field.



First process to be started by the kernel (i.e., the first element
of the task list) is called init_task with the process
name “swapper” [24]. On Symmetrical Multiprocessing (SMP)
systems there is an additional “/0” suffix for the initial task on
the first CPU. It is followed by a task with the process name
“init” [24].

C. Arm TrustZone Architecture

Arm TrustZone is a security extension introduced with
Armv6 that splits the physical machine into two sections [35].
The conventional OS that is generally assumed to run untrusted
software is called “normal world” or Rich Execution Environ-
ment (REE). Theoretically, the normal world can just ignore
the splitting of the physical machine and continue working
without any change.

Services that process sensitive data are an attractive goal
for attackers. To protect these services, they are run in the
so-called “secure world” or Trusted Execution Environment
(TEE) where they are managed by a trusted OS in the form
of TAs. This trusted OS should offer a minimal attack surface
and is running independently of the OS in the normal world.

Processors conforming to the Armv8 specification running
the AArch64 instruction set support different execution modes
called Exception Levels (ELs). Processes can move execution
to another EL by triggering an exception. There are different
instructions to trigger exceptions, depending on the current
and target EL. Exceptions can be handled on the same or on
a higher EL, but not on a lower one [17]. Analogously, the
secure world is split into ELs independently of the normal
world2.

Both worlds share the same physical processor. A flag called
NS (“non-secure”) in the Secure Configuration Register (SCR)
SCR_EL3 indicates the current world of the processor [26].
However, the way the normal world can interact with the
secure world is strictly defined by the processor specification.

According to the Arm specification, the Random Access
Memory (RAM) regions of both worlds do not need to be
physically separated. Different translation tables are used by
the MMU to prevent the normal world from accessing the
secure world memory pages. Code running in the secure
world can also add insecure memory pages to its translation
tables [17], [35].

The secure monitor is the only part of the secure world that
is accessible by the normal world and represents the interface
between these two worlds. Main task of the monitor is to
intercept Secure Monitor Calls (SMCs), manage the context
switch between the worlds and notify the secure world OS
appropriately about the call. Apart from hardware Interrupt
Requests (IRQs) and Fast Interrupt Requests (FIQs), the SMC
instruction is the only way to invoke the secure world after
handing over control to the normal world during the boot
process [36].

2Note that EL2, which can run hypervisors, is not used by the Arm
TrustZone unless the Armv8.4-SecEL2 extension is implemented [26]. Within
the scope of this work this possibility is neglected.

Regular System

EL0

EL1

EL2

EL3

Applications Applications

OS OS

Hypervisor Hypervisor

Secure Monitor

Normal World Secure World

Infected System

EL0

EL1

EL2

EL3

Applications Applications

OS OS

Hypervisor Hypervisor

Secure Monitor

Normal World Secure World

Infection

Fig. 2. Armv8 ELs and their components in the infection process [26].

OP-TEE [37] is a TEE primarily developed and maintained
by Linaro [38], [39]. Although OP-TEE was started as a
proprietary project, its code was released as open-source in
2014 [38], [40]. Primary contribution of the OP-TEE project is
the secure world OS, but it provides a complete configuration
to build and run a usable test system. Several target devices
are supported, including a virtual device for Armv8.

III. ADVERSARIAL MODEL & ROOTKIT ARCHITECTURE

We define the adversarial model as follows. The target
device is running a Linux-based OS in the normal world (such
as Android) and supports the Arm TrustZone. An attacker can
execute arbitrary code on EL1 of the secure world and EL0
of the normal world. Fig. 2 highlights the compromised ELs.
Steps to gain code execution on the device are out of scope of
this work. No further information about the normal world OS
such as source code, compilation artifacts or symbol addresses
are initially available to the attacker.

OP-TEE [37] is chosen as basis for this work. Major
challenge for the development of a TrustZone rootkit is the de-
ployment of the secure world code. Regular consumer devices
apply authentication checks on the secure world images on
startup. Only files cryptographically signed by the respective
vendor can legitimately be loaded. Therefore, emulation via
QEMU [41] was chosen for this experimental implementation.
Advantages over other possibilities are that emulation is easily
accessible, trivial to set up, free of costs and enables conve-
nient debugging features. While OP-TEE officially supports a



selection of physical devices [42], deployment of the rootkit
to these is out of scope for this work.

In the scope of this research scenario, the exact structure of
the normal world kernel is assumed to be unknown. No access
to the normal world kernel source code or compilation artifacts
on disk is possible. Locations of symbols such as functions and
data structures are initially not available to the rootkit. Field
offsets within kernel structures might vary between kernel
versions due to added or removed fields. Partially the order
of fields within data structures is randomized as a security
measure during the compilation process.

Our rootkit consists of the following two parts:
• A secure world OP-TEE pseudo TA (secure world

EL1) [43].
• An unprivileged normal world application (normal world

EL0).
A memory region shared between the normal world and

the secure world is used by OP-TEE for data transfer [44].
The secure world module of the rootkit abuses the low-level
implementation of this feature to achieve full access to the
physical memory. Normal world memory pages can be mapped
to the shared memory region by knowing their physical
addresses. Once mapped, the memory pages can be accessed
via secure world virtual addresses in the same way as regular
secure world memory. Memory analysis and manipulation
techniques provide the respective rootkit functionality. Due to
limits enforced by OP-TEE, the rootkit frees unused shared
memory as soon as it is not needed anymore. Convenient
functions to map normal world pages and free them again
are part of the internal OP-TEE Application Programming
Interface (API) accessible to the rootkit pseudo TA.

Located at EL1 of the secure world, the secure world rootkit
module is hidden from conventional normal world rootkit
detection mechanisms. The secure world module provides an
API to the normal world to invoke the rootkit functionality.
Invariants and assumptions about implementation concepts are
employed by this module to gather information and construct
parts of the interpretation of the kernel memory. A similar
approach was used successfully by Xiao et al. [24] for the
HyperLink tool on the x86 architecture.

An unprivileged normal world client application commu-
nicates with the secure world module using the standardized
API. Without elevated privileges, the normal world application
does not have access to kernel-internal information which
could be passed to the secure world. Nevertheless, system calls
can be utilized by the normal world client to trigger actions
within the kernel. Subsequent changes of the kernel state in
memory can then be observed and interpreted by the secure
world module.

IV. ROOTKIT IMPLEMENTATION

This section provides details about the implemented rootkit
and the underlying memory analysis techniques. An API-
oriented architecture is used for the implementation. Three
malware features are fully functional, but the modular design
allows straightforward extension of the rootkit. For simplicity,

the rootkit does not keep an internal state across calls. Each
invocation of a rootkit function takes care of its prerequisites
by itself. Other scheduling and invocation mechanisms are
subject to further research.

A. Memory Carving

The first implemented rootkit functionality is data extrac-
tion. Normal world memory is carved for data structures
containing static byte sequences. Based on a given leading byte
sequence header and trailing byte sequence footer, memory
regions spanning across both sequences are identified [45],
[46].

Corresponding byte sequences are passed by the normal
world client to the secure world component. Thus, the se-
cure world implementation is generic and can be applied to
arbitrary data formats having static headers and footers.

Specifically, carving for private keys of the
Rivest–Shamir–Adleman (RSA) [47] public-key cryptosystem
conforming to the Privacy-Enhanced Mail (PEM) [48] format
was implemented as a demonstration of the rootkit. This type
of keys can be trivially identified by its characteristic header
and footer.

Major difficulty for this feature is to narrow down the
relevant memory space to inspect. Azab et al. [49] presented
a way to trap translation table updates by instrumenting
the normal world kernel source code. However, as stated
in Section III, we restricted the adversarial model to only
consider access to the runtime memory. Instead, the following
approach is implemented. Delimitation of the relevant memory
regions requires knowledge about the location of memory
pages and memory blocks as explained in Subsection II-A.
Physical addresses of these memory units can be calculated by
a recursive scheme that starts at the initial page table. Given
the content of the kernel image, the location of the initial page
table can be deduced.

Details about the secure world side of the implementation
are provided next.

1) Finding the Kernel Image: First, the kernel image needs
to be found. A bruteforce search is the most primitive way of
finding specific memory regions. Every reasonable location in
the theoretical address space is checked whether it is mapped
by the normal world kernel and its content matches a specified
sequence of bytes.

In the default configuration of OP-TEE version 3.11.0,
the normal world kernel image is loaded at a randomized
address via KASLR [50], [51]. Magic bytes of the Unified
Extensible Firmware Interface (UEFI) header are used as
distinctive start of the kernel image. Iterating the complete
theoretical address space when using 48 address bits is a
significant computational effort, especially on low-powered
mobile devices. Given current devices, only a fraction of
the theoretically addressable memory is physically available.
Alignment restrictions are used to decrease the amount of
addresses to check and speed up the bruteforce search.

Starting from the normal world memory base at physical
address 0x40000000 [52], we map memory pages to the



secure world one by one. The kernel image and its leading
UEFI header is aligned to a 64KB (216) boundary. Considering
this limitation, the theoretical number of addresses to check
can be reduced from 248 to 232. At the time of writing, opcodes
of a specific assembly instruction right at the beginning of the
image form the magic bytes of the UEFI header of the ARM64
Linux image. Leading bytes of each page are checked for the
opcodes representing the UEFI header [53]. If the value is
found, the start of the kernel image was identified with high
probability.

2) Finding the Initial Page Table: A page table walk can
be used as optimization of a bruteforce search over the full
theoretical memory address space. Iterating over the page
tables requires knowledge about the location of the initial page
table (called swapper_pg_dir on Linux). Instructions of
the kernel are resident in memory after the system has booted
up. Parsing those instructions can reveal additional information
about the compilation-dependent properties of the kernel. Di-
rectly after the assembly instruction forming the UEFI header,
execution jumps to the primary entrypoint represented by
the symbol primary_entry via the unconditional branch
instruction b.

Compilation adds the relative address of the
primary_entry symbol to the b instruction. Opcodes
of the jump instruction are parsed to calculate the target
address [26]. According to the ARM64 Linux linker
script, the initial page table is located directly before the
primary_entry symbol [54]. Our rootkit traverses the
memory space backwards until a non-zero page is encountered.
The first non-zero page before primary_entry is the
swapper_pg_dir symbol.

3) Page Table Walk: Subsection II-A explained the fun-
damentals of the Armv8 virtual memory system. Once the
initial page table is identified, the rootkit maps it into the
secure world memory. We inspect each 64-bit value of the page
table separately and interpret it according to the architecture
reference manual [26].

To cover all translation levels, we apply the interpretation
recursively. Memory blocks and pages contain the actual data
and compose the memory regions to be searched. Addresses
used by this scheme to refer to pages, tables and blocks are
physical addresses, i.e., we do not require further processing
to map them into the secure world address space [26].

Memory blocks have a fixed size that depends on the
translation granule size. While our proof-of-concept rootkit
was extensively tested with 4KB pages, the implementation
can be adjusted trivially to work with other translation granule
size configurations. Potential improvements to the developed
rootkit include the dynamic extraction and consideration of the
page size at runtime. The kernel image header could serve as
a source for the extraction of the page size [55].

4) Content Extraction: Previous sections explained the
identification of memory regions to be considered. Finally,
the rootkit searches within the memory pages and blocks
for the passed identification strings. Although more efficient

algorithms exist, we rely on a naive byte-wise comparison with
algorithmic complexity O(mn) for simplicity.

First, the rootkit tries to find the passed data header value.
If the header is found, this memory location is saved as the
beginning of the memory region to be detected. Starting from
the location of the header, the rootkit searches for the data
footer value. In case both searches are successful, the location
of the footer marks the end of a valid match.

Found matches can then be further processed in the secure
world (e.g., transmitted over the network via the GlobalPlat-
form sockets API [56]) or returned to the normal world client.

B. Privilege Escalation

Another major functionality implemented in the scope of
this work is the elevation of privileges. An unprivileged (non-
root) normal world process is modified to be capable of
executing actions with elevated (root) permissions.

From a high-level API point of view the privilege escalation
works as follows. The normal world client passes the PID
of an arbitrary, but in general unprivileged, target process to
the secure world. Next, the rootkit uses memory operations to
identify and manipulate the kernel process structure to elevate
the privileges of the selected target process. Direct Kernel
Object Manipulation (DKOM) is a term commonly used to
refer to this kind of operations. Execution then continues in the
normal world and the target process is able to launch actions
with elevated privileges.

Remaining section lists the single steps of the privilege
escalation in detail.

1) Finding the Initial Task Structure: Subsection II-B ex-
plained how processes are managed by the Linux kernel in
a doubly linked list of instances of the task_struct type.
Knowledge about the location of the list in memory is crucial
for the goal of elevating privileges of a process. Additionally,
randomization of field order in the structure can potentially
be applied at compile time and needs to be considered for a
stable implementation [57].

“swapper/0”, the process name of init_task, is relatively
easy to identify within arbitrary data. The rootkit runs a
bruteforce search starting from the UEFI header. Even with
the location of the process name of init_task avail-
able, due to structure-internal randomization the beginning
of the task_struct instance can still not be trivially
concluded [57].

Structure field randomization covers only parts of
task_struct. Thread information fields at the beginning
of the structure are explicitly excluded from the compile-time
randomization [57], [58]. Typical bit patterns of these fields
help to identify the beginning of the task_struct [59]. Im-
plicitly, the identification of the structure beginning provides
the offset of the comm field.

2) Calculating the Kernel Image Virtual Address Off-
set: Subsection IV-A1 and Subsection IV-B1 explained how
to circumvent randomization of physical kernel image ad-
dresses by using bruteforce searches and considering align-
ment constraints. At runtime, data structure instances such



as init_task exclusively work with virtual addresses.
However, for OP-TEE only physical addresses are accessible.
Further interpretation of memory references within the kernel
image requires identification of the exact translation process.
Several properties of virtual addresses serve as validation
checks for all candidates within the assumed range of the
init_task instance.

First, a coarse filter verifies the expected format of the
virtual address. Kernel virtual addresses have all bits not used
for the actual addressing set to 1 [60]. A formal explanation
is given in Equation 1, which makes use of “&”, “˜” and
“<<” as binary operators from the C programming language.
VA_BITS is a constant that refers the number of bits used for
the virtual addressing, e.g., 48 for the 4KB translation granule
size.

candidate & (˜0ul << VA_BITS)

==

(˜0ul << VA_BITS)

(1)

Virtual addresses and the corresponding physical addresses
have identical page offset bits. Depending on the size of the
pages, the offset consists of a different number of bits. 4KB
pages which are considered in the scope of this work use the
lowest 12 bits of an address as page offset [26].

As a final check, due to the semantics of its fields
init_task must contain multiple references to itself [61].
If we surpass a minimum threshold for the number of occur-
rences of the candidate, the check is successful.

Given all the constraints listed above, the virtual address of
init_task can be found reliably within the limited memory
region.

3) Iterating Tasks: Finding and analyzing tasks requires a
stable mechanism to iterate the task list. Starting from the
initial task, the rootkit needs to identify the pointer to the
next element in the list. The field which manages the doubly
linked list is called tasks. First entry of the tasks field is
the pointer to the successor, therefore the offset of the tasks
field is identical to the offset of the successor field it contains.

An address translation simulation verifies the correct-
ness of the virtual addresses in the assumed range of the
task_struct instance. A correctly identified offset of the
tasks field in init_task references the following entry
in the list with the comm field set to “init” [24]. Additionally,
the successor of init_task by definition has init_task
set as predecssor.

Xiao et al. [24] showed that offsets within the structure are
constant among all instances of the structure. Based on this
statement, general formulae for arbitrary structure fields in the
list elements can be provided. Equation 2 shows the calculation
of the beginning of the second task in the task list. The asterisk
(“*”) symbol is used to mark the access to the value at the
given address (as in the C programming language).

*(init_task_start + tasks_field_offset)

- tasks_field_offset
(2)

Equation 2 can be extended for arbitrary fields in the list.
Calculation of the address of the comm field of the second
entry in the task list is shown in Equation 3.

*(init_task_start + tasks_field_offset)

- tasks_field_offset + comm_field_offset
(3)

Once the invariant concerning the name of the second task
is fulfilled, the offset of the tasks field was found. Iterating
over all tasks in the cyclic list requires to follow the value of
the tasks field until it is equal to init_task.

During this stage, it is the first time we have to resolve
virtual to physical addresses. Linux releases targeted by
this work have varying ways of structuring memory [62].
Therefore, different memory layouts need to be considered
to provide compatibility across kernel versions. Relevant ad-
dress translation implementations of the rootkit stem directly
from the Linux kernel source code. To discover the correct
implementation for the currently running system, a bruteforce
scheme of translation simulations is applied. Once a translation
scheme fulfills the above invariant, we use it for all future
address translations.

4) Identifying Processes: Further analysis and manipulation
of tasks requires them to be identifiable. Our implementation
relies on a data invariant to find the offset of the PID field
within task_struct. Equation 4 formalizes the invariant
between two consecutive tasks.

*(task_start + pid_field_offset)

==

*(*(task_start + tasks_field_offset)

- tasks_field_offset

+ pid_field_offset) - 1

(4)

Below follows a description of the implementation.
We assume that tasks started early by the kernel keep run-

ning until the system is shut down. Based on this assumption,
the processes at the beginning of the task list have PIDs
starting at 0 and are strictly incremented by 1 without any
interruption. Each process has an expected PID at an unknown
but constant offset. The rootkit checks offsets starting from 0
and increment it by the size of a PID after each iteration. If the
value at the current offset matches the expected PID, the next
process is checked for its respective expected PID. In case an
empirically determined number of task_struct instances
at the start of the list have incrementing PIDs starting from 0,
the structure offset refers to the PID field.

5) Identifying and Overwriting Credential Pointers: Per-
missions of a process are defined by the credential structures
referenced by its corresponding task_struct instance.



Time

Instruction ... access(...) ...

Credentials cred != real_cred

Fig. 3. Temporary difference between cred and real_cred during
execution of the access system call.

Targeted versions of the Linux kernel of this work have two
pointers to credential structures inside task_struct:

• cred
• real_cred

Both fields store the address of an instance of a structure
type cred, which is assumed to be randomized internally at
compile time. While the internals of the structure as well as the
exact purpose of splitting the permissions into two fields is out
of scope of this work, we examine the state of the pointers in
memory in detail. Initially, both fields contain the same value,
i.e., they refer to the same structure in memory. Linux applies
changes to the credentials of a task_struct through the
override_creds function.

One notable example where override_creds is used is
within the access system call [63]. During a fraction of the
execution of the access system call, the values of the cred
and real_cred fields differ. Afterwards, the initial value
is restored and the two fields contain identical values again.
Fig. 3 sketches this behavior. Credential values of the initial
task “swapper/0” represent elevated privileges and are never
modified.

These structural properties of the actively developed Linux
kernel can potentially be changed in future versions. They
were first published as part of a stable Linux kernel release
in version 2.6.29 in 2009 [64], [65]. Due to the age of this
implementation, we consider this behavior well-established
and a precondition for this rootkit implementation.

The implemented approach for a privilege escalation works
as follows.

First, the normal world client process is forked. Sole pur-
pose of the newly created child process is to repeatedly call the
access system call and thereby cause the kernel to modify
the credential pointers of the respective task_struct in
memory. As soon as the parent process finishes its procedure,
the child process serves no further purpose and the parent
terminates it.

Meanwhile, the parent process calls the secure world
rootkit component via the regular API and passes the PID
of the child process along as parameter. After identifying the
task_struct instance of the initial task in memory as de-
scribed in Subsection IV-B1, the rootkit searches the memory
range of the structure for two identical 64-bit numbers which
match the format of virtual addresses. Once two candidate
offsets are identified, we observe the child process of the
client. A heuristic validates the candidate offsets. In case the

values at the offsets in the task_struct of the child process
differ in some cases but are identical in others, the offsets
of the cred and real_cred fields have been successfully
calculated. Because the system call only modifies the pointers
for a fraction of its execution, the rootkit repeats the check
several times for each pair of offset candidates to get more
reliable results.

Although mapping and modifying the credential structure
instances would be possible at this stage, compile-time ran-
domization within the structure renders this approach highly
complex. A trivial way to modify the privileges is to overwrite
the credential addresses of the target process with those of
the credentials of the initial task [33]. Through this action, all
future child processes of the target process inherit the elevated
privileges. Effective permissions of the target process itself are
not modified. For this reason a shell which can then launch
arbitrary processes with elevated privileges is a suitable choice
for a target process.

Credentials within task_struct are subject to a refer-
ence counting mechanism. Copying credential addresses to
foreign tasks as presented above corrupts the integrity of
this scheme. Termination of the manipulated target process
causes the reference counter of the credentials to be reduced
to zero while they are still referenced by the initial task. A
kernel fault is the result of this inconsistency. Restoring the
initial credential pointers before terminating the process could
increase stability of this approach.

C. Process Starvation

The last rootkit feature developed as part of this work
is the manipulation of process states. Modifying the state
of a process changes the way the process is treated by
the scheduler. Setting the respective state prevents the target
process from being scheduled. Without being considered by
the scheduler, the process execution is starved of CPU time
and stalled. Graziano et al. [66] suggested antivirus systems
or Intrusion Detection Systems (IDSs) as target for process
starvation.

Invocation of this feature starts with a call of the normal
world client to the secure world. In addition to the PID of the
target process to modify, the rootkit API expects the new state
to be provided as second parameter. Memory operations form
a DKOM to change the state of the selected target process to
the passed parameter. Execution continues in the normal world
and the target process is not scheduled anymore.

Initial steps of the exploitation are identical to the privilege
escalation case (Subsection IV-B). Instead of the final step of
manipulating the cred and real_cred fields, the state
field is used for this technique. Following lists the additional
steps of the process starvation in detail.

1) Identifying and Overwriting Process State Information:
Current state of a process is represented via the state field
of the respective task_struct field. Although the state
field is not part of the randomized section of task_struct,
the thread information stored at the beginning of the structure



might change in size. To change the value of the state field,
its offset within the structure needs to be recovered.

We search task_struct instances at all offsets for typi-
cal state values. Because the state field is located before the
randomized section, it is reasonable to start with low offsets.

At least the following states are expected to be found in the
task list [67].

• TASK_RUNNING (tasks ready to run)
• TASK_INTERRUPTIBLE (sleeping tasks)
If an offset is discovered that yields multiple processes

in the states listed above, the state field was recovered
successfully.

Knowing the offset of the field, it can be modified arbitrarily.
Depending on the desired effect, multiple process state values
come into consideration.

Assigning the process a state of EXIT_ZOMBIE prevents it
from being scheduled in the future. However, this modification
is visible to normal world EL0. Possibilities to view the change
include the tools ps and top as well as the /proc file
system.

A more stealthy alternative is the TASK_DEAD state. Afore-
mentioned information sources still show the process as run-
ning when setting the state to TASK_DEAD, which makes
the modification less likely to be noticed. While testing the
TASK_DEAD state for this feature, we experienced occasional
crashes of the Linux kernel. The proof-of-concept rootkit
therefore uses EXIT_ZOMBIE for the process starvation fea-
ture and no further investigation on this issue was conducted.

V. EVALUATION AND IMPACT ANALYSIS

In our attack scenario we consider details about the Linux
kernel runtime memory to be unknown in general. The secure
world rootkit uses invariants and assumptions about implemen-
tation concepts to reconstruct internal information. Section IV
explained the implementation in detail. However, implementa-
tion details of the Linux kernel changed between the targeted
versions of this work. A stable rootkit implementation should
be able to cope with minor changes in the kernel while
relying on established concepts and properties. This section
benchmarks the rootkit implemented in the scope of this work
against various versions of the Linux kernel.

According to the OP-TEE documentation, the required
generic TEE framework is part of the official Linux kernel
since version 4.12 [68]. Starting from release 4.12, we evaluate
all major versions up to 5.6 of the Linaro fork of Linux [69].

Identical default configuration values are set by the OP-
TEE build system for all tested releases. This configuration
specifically includes a memory translation granule size of
4KB for all tests. “randstruct”, the GNU Compiler Collection
(GCC) plugin that performs the randomization of the order of
structure fields within the Linux kernel, is explicitly enabled
for all tested Linux versions starting from 4.163. Activation of
other kernel security features depends on the OP-TEE build

3“randstruct” was introduced in version 4.13 of Linux but major versions
before 4.16 do not compile successfully for ARM64 with the plugin enabled.

configuration as well as the default configuration of the Linux
kernel itself.

We evaluate all rootkit functionalities presented in Sec-
tion IV. For each of the Linux versions to test, we check
out the kernel repository, configure “randstruct” and build
the complete TEE environment. After the system started
successfully, we log in with the unprivileged user “test” at
the normal world terminal and start the rootkit client.

First, the privilege escalation is tested. It is expected that
after a successful execution the credentials of the target process
changed from “test” to “root”. If the execution fails or the user
does not match “root” for all future children of the target task
after the execution finished, the functionality is considered to
be broken.

Second feature to test is the starvation of a user space
process. We launch another process that repeatedly creates
the same file in an endless loop. Before the invocation of the
rootkit, the modification time of the file is expected to change
continuously. Upon successful execution of the function, it
is expected that the process is in the “zombie” state but the
modification time of the file remains unchanged.

Last test covers the memory carving feature. RSA private
keys are placed within the normal world client (EL0) as well
as a kernel module (EL1). While the total set of detected keys
might vary between tests, a successful execution must include
at least both keys intentionally put in place.

A. Results

We classify the evaluation runs according to the following
categories.

• Compatible (C): A kernel version is compatible if the
rootkit is invoked successfully and the expected result is
achieved.

• Incompatible (I): Incompatible versions are invoked
successfully as well. However, the rootkit is not able to
produce the expected result.

• Failed (F): Lastly, the compatibility test might fail.
Failures are considered to be triggered externally, e.g.,
invocation of OP-TEE 3.11.0 is broken in the respective
kernel version. This type of error does not depend on the
rootkit implementation.

Final results of the evaluation are listed in Table I.

B. Discussion

This section explains and discusses the results presented in
Subsection V-A.

Memory carving is incompatible with all Linux versions
prior to 4.20. Reason for this is that version 4.20 intro-
duced the property the heuristic uses for discovering the
swapper_pg_dir symbol [54]. No alternative heuristic
could be found. At the same time, the absence of a working
heuristic for the currently incompatible versions can not be
confirmed.

Versions 5.2, 5.3 and 5.4 of the Linux kernel are not
compatible with OP-TEE 3.11.0. Launching the rootkit or
the “xtest” application shipped with OP-TEE yields an error.



TABLE I
EVALUATION RESULTS SETTING ROOTKIT FUNCTIONS INTO RELATION

WITH LINUX KERNEL VERSION.

Version “randstruct”
enabled

Privilege
Escalation

Process
Starvation

Memory
Carving

4.12 No C C I
4.13 No C C I
4.14 No C C I
4.15 No C C I
4.16 Yes C C I
4.17 Yes C C I
4.18 Yes C C I
4.19 Yes C C I
4.20 Yes C C C
5.0 Yes C C C
5.1 Yes C C C
5.2 Yes F F F
5.3 Yes F F F
5.4 Yes F F F
5.5 Yes C C C
5.6 Yes C C C

Because of that, all functionalities are marked as failed and
no further evaluation on that versions was conducted.

Neglecting the two error categories explained above, all
of the tested Linux kernel versions are compatible with the
rootkit. Multiple address translation functions were neces-
sary to overcome significant changes in the ARM64-specific
memory management [62]. Subsection IV-B3 explained this
process in detail. Further changes to the kernel impacting the
compatibility of the rootkit with future versions need to be
expected.

These results clearly show that generic rootkits utilizing
the Arm TrustZone are possible and may impact Linux-based
systems across kernel and OS recompilations and updates,
even when state-of-the-art exploitation countermeasures such
as randomization are enabled.

VI. PROTECTION AGAINST SECURE WORLD ROOTKITS

Defending the integrity of the normal world against attacks
from a compromised secure world is inherently difficult. In this
section, we provide a short, non-comprehensive discussion of
selected mitigation ideas and approaches, their effectiveness
and limitations.

A. Injection of False-Positives

Targeted modifications of the normal world memory content
can be used to cause various assumptions of the rootkit
implementation to fail. For example, an artificial but correctly
aligned kernel image header instruction could be inserted
before the actual start of the kernel image. Current imple-
mentation of the rootkit would not be able to differentiate
between the artificial and true kernel image start. Execution
would simply continue with the kernel image header detected
at the lower physical address, causing later stages to fail.

B. Randomization

Randomization of addresses significantly complicates ex-
ploitation for an attacker.

When KASLR is enabled, the kernel code is loaded at
a randomized location at boot time [50]. Our rootkit uses
its privileged environment to bypass KASLR with a simple
bruteforce search to find the kernel image header in memory.

Approaches for kernel exploit mitigation might extend the
idea behind KASLR and introduce more locations for ran-
domization of the kernel memory, raising the bar for the
development of a rootkit as presented in this paper. For
example, “PT-Rand” [70] randomizes the location of the initial
page table during the kernel startup. Our heuristic approach
(see Section IV-A) to localize the initial page table is quite
fragile, and the PT-Rand approach would break our current
memory carving implementation.

Another type of randomization supported by Linux
is the randomization of kernel data structures such as
task_struct. The “randstruct” GCC plugin randomizes
field offsets at compile time. While the implementation of our
rootkit features (see Section IV) is robust against structure
randomization, circumventing this protection mechanism re-
quired us to develop a complex heuristic to find the offsets of
credential pointers.

C. Memory Integrity Checks

The Linux Kernel Runtime Guard (LKRG) [71] is a Linux
kernel module that adds integrity checks to the kernel at
runtime to protect it from exploits. Just like the rest of the
kernel, the LKRG module resides in memory accessible by
the secure world. A secure world rootkit might write to the
memory of the LKRG module and manipulate its state to evade
the checks.

D. Hardware-based Measures

Authors such as Zhou and Makris [72] propose hardware-
assisted rootkit detection. Zhou and Makris suggest a custom
hardware component that collects process features, which are
then analyzed with statistical methods to detect malicious
execution traces. It is an interesting approach that should be
further explored in the context of a secure world rootkit.

VII. RELATED WORK

The prior work below addresses topics relevant for the
implementation of rootkits residing in the TrustZone. Most
importantly, Thomas Roth first proposed a TrustZone-based
rootkit at the Hack In Paris conference in 2013 [18]. However,
no implementation of a rootkit on the basis of the Arm
TrustZone was published to the best of our knowledge, and the
progress in this area seems to have stalled since then, both in
the offensive research community, as well as in the defensive
field to guard against such next-generation mobile rootkits.

A. Attacks on the Arm TrustZone

Similar to vulnerabilities in Intel Software Guard Extensions
(SGX) [73]–[75], vulnerabilities in secure world OSs and TAs
have been published. Cerdeira et al. [15] analyzed vulnerability
reports of all major commercial TEEs. Protection mechanisms
such as Address Space Layout Randomization (ASLR) and



stack canaries taken for granted in the normal world were
found to be implemented insufficiently or missing in most
secure world implementations. Defenses were suggested that
help to mitigate the identified architectural issues.

“Bits, Please!” [76] is an online blog covering the topics
of reverse engineering and exploiting Qualcomm’s TrustZone
implementation [13], [14], [77]. Furthermore, an attack on
the normal world Linux kernel is demonstrated [78]. While
the attack described in the “Bits, Please!” blog also targets
the normal world kernel from the secure world, there are
significant differences to our work. First, the attack described
in the blog originates in the normal world and uses an exploit
to execute code in the secure world whereas we assume the
secure world OS is already compromised. Our work includes
heuristics to overcome protection mechanisms such as KASLR
which are disabled in the scenario described in the blog. Addi-
tionally, the “Bits, Please!” implementation requires the kernel
symbol table in memory at runtime and has direct access to
the physical address of the kernel image. Neither the kernel
symbol table nor the knowledge about the physical address of
the kernel image are a prerequisite of our rootkit. Another
major difference is that we observe and manipulate kernel
data structures but do not inject custom code. Nevertheless,
utilization of the kernel symbol table represents an interesting
approach that could be integrated into future versions of the
rootkit.

Rosenberg [79] exploited an integer overflow vulnerability
on Qualcomm-based devices to write to arbitrary locations
in the secure memory. Sanfelix [80] pointed out insufficient
security measures. Multiple exploits for vulnerabilities in
TAs were described. Shen [81] developed two exploits to
execute arbitrary code in the context of the Huawei TEE and
ultimately read images from a smartphone fingerprint sensor.
Komaromy [82] created a blog series about reverse engineer-
ing and exploiting Samsung’s TrustZone implementation.

Machiry et al. [19] introduced a vulnerability class called
“BOOMERANG” that abuses the capabilities of the Arm
TrustZone to read and write arbitrary memory locations.
BOOMERANG leverages the Arm TrustZone to allow un-
trusted applications to steal sensitive data from other applica-
tions, bypass security checks or gain full control of the normal
world OS. Several TEEs of different vendors were evaluated
and found to be vulnerable.

Fleischner et al. [16] evaluated the exploitability of memory-
safety violations inside TEEs. OP-TEE was used as basis for
their case study, extended with vulnerable examples inspired
by real-world exploits seen in the wild.

Attacks on the Arm TrustZone highlight the fact the pre-
conditions for our proposed rootkit – a compromised TEE –
are very realistic in the real world. This in addition to the fact
that history already proved that even reputable vendors such
as Sony [83] and Lenovo [84] might be interested in shipping
and integrating rootkit technology and malware to spy on their
users.

B. Rootkits Targeting Non-TrustZone Hardware-assisted Iso-
lated Execution Environments

In contrast to the Arm TrustZone, mechanisms of the x86
architecture with comparable levels of privilege have been tar-
gets of past research: Embleton et al. [21], [85] implemented a
rootkit based on the Intel System Management Mode (SMM).
Proof-of-concept implementations for a chipset level keylogger
and network backdoor directly interfacing with the network
card were provided. Schiffman and Kaplan [86] presented
an approach to hijack Universal Serial Bus (USB) host con-
trollers by running malware in x86’s SMM. A respective USB
keylogger was created as proof-of-concept. Zhang et al. [87]
used the Intel SGX technology to protect the secret key of
a custom ransomware implementation. Schwarz et al. [88]
implemented an Intel SGX enclave malware which fully and
stealthily impersonates its host application.

C. Memory Forensics

Memory forensics is used by this work to construct an
interpretation of the normal world memory. Recently, Pagani
and Balzarotti [89] demonstrated how OS profiles for memory
forensics can be generated automatically. Their novel approach
combines source code and binary analysis techniques. Zhang et
al. [90] rely on kernel symbols and binary code interpretation
to extract live system information. Case et al. [91] combine
symbol information generated during kernel compilation with
forensic techniques to restore data structures of the Linux
kernel. Pendergrass and McGill [92] use virtualization and
Virtual Machine (VM) introspection to verify consistency of
critical kernel data structures at runtime. Xiao et al. [24]
implemented a VM introspection tool called “HyperLink”
designed to do a partial reconstruction of the OS state without
having the relevant source code available. Invariants are used
to recover parts of the state from memory.

Qi et al. [93] analyze the evolution of kernel objects at
source code level to automatically infer the offsets of crucial
fields from a memory dump. The implementation described by
Qi et al. relies on the presence of kernel symbols and requires
structure randomization to be disabled.

VIII. CONCLUSION

This work combined memory analysis techniques with the
capabilities of the Arm TrustZone to form a novel rootkit
based on stable kernel state invariants and implementation
concepts. The automated analysis was conducted solely on
the memory of the running system, without relying on source
code or compilation artifacts to be available during execution.
We demonstrated memory carving, privilege escalation and
process starvation as rootkit features in a proof-of-concept im-
plementation. Results of this work highlight that improvements
to the existing defensive mechanisms are needed to mitigate
exploits targeting TEEs for Arm devices and to protect the
normal world effectively against rootkits and malicious code
residing in the Arm TrustZone: With more trust comes more
responsibility (to guard against the additional attack surfaces).



REFERENCES

[1] A. C. Scheinbaum, The dark side of social media: A consumer psychol-
ogy perspective. Routledge, 2017.

[2] P. Ketelaar and M. van Balen, “The smartphone as your follower: The
role of smartphone literacy in the relation between privacy concerns,
attitude and behaviour towards phone-embedded tracking,” Computers
in Human Behavior, vol. 78, 2018.

[3] A. Khatoon and P. Corcoran, “Privacy concerns on android devices,” in
2017 IEEE International Conference on Consumer Electronics (ICCE),
2017.

[4] B. Florea, “Smartphone input/output interface for iot applications,” in
2017 25th Telecommunication Forum (TELFOR), 2017.

[5] A. Qamar, A. Karim, and V. Chang, “Mobile malware attacks: Review,
taxonomy & future directions,” Future Generation Computer Systems,
2019.

[6] F. Zhang and H. Zhang, “Sok: A study of using hardware-assisted
isolated execution environments for security,” in Proceedings of the
Hardware and Architectural Support for Security and Privacy 2016.
ACM, 2016.

[7] J. Rutkowska. (2015) Intel x86 considered harmful. [Online]. Available:
https://blog.invisiblethings.org/papers/2015/x86 harmful.pdf

[8] N. Redini, A. Machiry, D. Das, Y. Fratantonio, A. Bianchi, E. Gustafson,
Y. Shoshitaishvili, C. Kruegel, G. Vigna, and S. Barbara, “BootStomp:
On the Security of Bootloaders in Mobile Devices,” in USENIX Security
2017, 2017.

[9] F. Dickson, “‘hardening’ android: Building security into the core of
mobile devices,” Secure Networking in Frost & Sullivan, vol. 2, 2014.

[10] GlobalPlatform Device Committee: TEE Protection Profile, 2020.
[11] D. Quarta, M. Ianni, A. Machiry, Y. Fratantonio, E. Gustafson,

D. Balzarotti, M. Lindorfer, G. Vigna, and C. Kruegel, “Tarnhelm:
Isolated, transparent & confidential execution of arbitrary code in arm’s
trustzone,” in Proceedings of the 2021 Research on offensive and
defensive techniques in the Context of Man At The End (MATE) Attacks,
2021.

[12] (2017) Project zero: Trust issues: Exploiting trustzone tees.
[Online]. Available: https://googleprojectzero.blogspot.com/2017/07/
trust-issues-exploiting-trustzone-tees.html

[13] (2016) Bits, please!: Qsee privilege escalation vulnerability and exploit
(cve-2015-6639). [Online]. Available: https://bits-please.blogspot.com/
2016/05/qsee-privilege-escalation-vulnerability.html

[14] (2016) Bits, please!: Trustzone kernel privilege escalation (cve-2016-
2431). [Online]. Available: https://bits-please.blogspot.com/2016/06/
trustzone-kernel-privilege-escalation.html

[15] D. Cerdeira, N. Santos, P. Fonseca, and S. Pinto, “Sok: Understanding
the prevailing security vulnerabilities in trustzone-assisted tee systems,”
2020 IEEE Symposium on Security and Privacy (SP), 2020.

[16] F. Fleischer, M. Busch, and P. Kuhrt, “Memory corruption attacks within
android tees: a case study based on op-tee,” in Proceedings of the 15th
International Conference on Availability, Reliability and Security, 2020.

[17] ARM Cortex-A Series: Programmer’s Guide for ARMv8-A, 2015.
[18] T. Roth. (2013) Next generation mobile rootkits. [Online]. Available:

https://hackinparis.com/data/slides/2013/Slidesthomasroth.pdf
[19] A. Machiry, E. Gustafson, C. Spensky, C. Salls, N. Stephens, R. Wang,

A. Bianchi, Y. R. Choe, C. Kruegel, and G. Vigna, “Boomerang:
Exploiting the semantic gap in trusted execution environments,” in
NDSS, 2017.

[20] C. Kallenberg and X. Kovah. (2015) How
many million bioses would you like to in-
fect. [Online]. Available: http://legbacore.com/Research files/
HowManyMillionBIOSesWouldYouLikeToInfect Whitepaper v1.pdf

[21] S. Embleton, S. Sparks, and C. Zou, “Smm rootkit: a new breed of os
independent malware,” Security and Communication Networks, vol. 6,
2013.

[22] (2017) Nvd - cve-2017-5689. [Online]. Available: https://nvd.nist.gov/
vuln/detail/CVE-2017-5689

[23] S. Zhang, X. Meng, L. Wang, and G. Liu, “Research on linux kernel
version diversity for precise memory analysis,” in International Con-
ference of Pioneering Computer Scientists, Engineers and Educators,
2017.

[24] J. Xiao, L. Lu, H. Wang, and X. Zhu, “Hyperlink: Virtual machine intro-
spection and memory forensic analysis without kernel source code,” in
2016 IEEE International Conference on Autonomic Computing (ICAC),
2016.

[25] B. Ward, How Linux works: What every superuser should know. No
Starch Press, 2014.

[26] Arm Architecture Reference Manual: Armv8, for Armv8-A architecture
profile, 2020.

[27] D. Patterson and J. Hennessy, Computer Organization and Design ARM
Edition: The Hardware Software Interface. Morgan Kaufmann, 2016.

[28] (2020) Kconfig - arm64 - arch - kernel/git/torvalds/linux.git - linux
kernel source tree. [Online]. Available: https://git.kernel.org/pub/scm/
linux/kernel/git/torvalds/linux.git/tree/arch/arm64/Kconfig?h=v5.6#n780

[29] W. Stallings, Operating Systems: Internals and Design Principles.
Pearson, 2017.

[30] P. McKenney. (2007) What is rcu, fundamentally? [lwn.net]. [Online].
Available: https://lwn.net/Articles/262464/

[31] (2020) What is rcu? – ”read, copy, update” - the linux kernel
documentation. [Online]. Available: https://www.kernel.org/doc/html/
v5.6/RCU/whatisRCU.html

[32] A. Tanenbaum and H. Bos, Modern operating systems. Pearson, 2015.
[33] N. Fabretti. (2018) Lexfo’s security blog - cve-2017-11176: A step-

by-step linux kernel exploitation (part 4/4). [Online]. Available: https:
//blog.lexfo.fr/cve-2017-11176-linux-kernel-exploitation-part4.html

[34] S. Skiena, The Algorithm Design Manual. Springer London, 2008.
[35] ARM Security technology: Building a secure system using TrustZone

technology, 2009.
[36] S. Pinto and N. Santos, “Demystifying arm trustzone: A comprehensive

survey,” ACM Computing Surveys (CSUR), 2019.
[37] Open portable trusted execution environment - op-tee. [Online].

Available: https://www.op-tee.org/
[38] About op-tee - op-tee documentation. [Online]. Available: https:

//optee.readthedocs.io/en/3.10.0/general/about.html#history
[39] Linaro - leading collaboration in the arm ecosystem. [Online].

Available: https://www.linaro.org/
[40] Op-tee. [Online]. Available: https://github.com/OP-TEE/
[41] F. Bellard, “Qemu, a fast and portable dynamic translator,” in USENIX

Annual Technical Conference, FREENIX Track, vol. 41, 2005.
[42] Platforms supported - op-tee documentation. [Online]. Available:

https://optee.readthedocs.io/en/3.10.0/general/platforms.html
[43] Trusted applications - op-tee documentation. [Online].

Available: https://optee.readthedocs.io/en/3.10.0/architecture/trusted
applications.html#pseudo-trusted-applications

[44] Core - op-tee documentation. [Online]. Available: https://optee.
readthedocs.io/en/3.10.0/architecture/core.html#shared-memory

[45] M. Cohen, “Advanced carving techniques,” Digital Investigation, vol. 4,
no. 3, 2007.

[46] T. Van Deursen, S. Mauw, and S. Radomirovic, “mcarve: Carving
attributed dump sets,” in Abstract book of 20th USENIX Security
Symposium, 2011.

[47] R. Rivest, A. Shamir, and L. Adleman, “Cryptographic communications
system and method,” Patent US4 405 829A, 1983.

[48] J. Linn, “Rfc 1421: Privacy enhancement for internet electronic mail:
Part i: Message encryption and authentication procedures,” Tech. Rep.,
1993.

[49] A. Azab, P. Ning, J. Shah, Q. Chen, R. Bhutkar, G. Ganesh, J. Ma,
and W. Shen, “Hypervision across worlds: Real-time kernel protection
from the arm trustzone secure world,” in Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, 2014.

[50] J. Edge. (2013) Kernel address space layout randomization [lwn.net].
[Online]. Available: https://lwn.net/Articles/569635/

[51] (2020) arm64-stub.c - libstub - efi - firmware - drivers -
kernel/git/torvalds/linux.git - linux kernel source tree. [Online].
Available: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.
git/tree/drivers/firmware/efi/libstub/arm64-stub.c?h=v5.6

[52] arm-trusted-firmware/platform def.h at v2.3 - arm-
software/arm-trusted-firmware. [Online]. Available:
https://github.com/ARM-software/arm-trusted-firmware/blob/v2.3/
plat/qemu/qemu/include/platform def.h#L75

[53] (2020) head.s - kernel - arm64 - arch - ker-
nel/git/torvalds/linux.git - linux kernel source tree. [Online].
Available: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.
git/tree/arch/arm64/kernel/head.S?h=v5.6#n72

[54] (2018) arm64/mm: move runtime pgds to rodata. [Online].
Available: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.
git/commit/?id=8eb7e28d4c642c310f25c18f80a44dd4b01c694e



[55] (2020) booting.rst - arm64 - documentation - kernel/git/-
torvalds/linux.git - linux kernel source tree. [Online].
Available: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.
git/tree/Documentation/arm64/booting.rst?id=v5.6

[56] GlobalPlatform Device Technology: TEE Sockets API Specification,
2021.

[57] N. Hussein. (2017) Randomizing structure layout [lwn.net]. [Online].
Available: https://lwn.net/Articles/722293/

[58] (2017) task struct: Allow randomized layout. [Online].
Available: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.
git/commit/?id=29e48ce87f1eaaa4b1fe3d9af90c586ac2d1fb74

[59] (2016) sched/core: Allow putting thread info into task struct. [Online].
Available: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.
git/commit/?id=c65eacbe290b8141554c71b2c94489e73ade8c8d

[60] (2015) arm64: introduce va start macro - the
first kernel virtual address. [Online]. Avail-
able: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/
commit/?id=127db024a7baee9874014dac33628253f438b4da

[61] (2020) init task.c - init - kernel/git/torvalds/linux.git - linux kernel
source tree. [Online]. Available: https://git.kernel.org/pub/scm/linux/
kernel/git/torvalds/linux.git/tree/init/init task.c?id=v5.6

[62] (2019) arm64: mm: Flip kernel va space. [Online].
Available: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.
git/commit/?id=14c127c957c1c6070647c171e72f06e0db275ebf

[63] (2021) access(2) - linux manual page. [Online]. Available: https:
//man7.org/linux/man-pages/man2/access.2.html

[64] (2009) CRED: Differentiate objective and effective
subjective credentials on a task. [Online]. Avail-
able: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/
commit/?id=3b11a1decef07c19443d24ae926982bc8ec9f4c0

[65] (2009) CRED: Inaugurate COW credentials. [Online]. Avail-
able: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/
commit/?id=d84f4f992cbd76e8f39c488cf0c5d123843923b1

[66] M. Graziano, L. Flore, A. Lanzi, and D. Balzarotti, “Subverting
operating system properties through evolutionary dkom attacks,” in
International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment, 2016.

[67] K. Sovani, “Kernel korner - sleeping in the kernel,” Linux Journal, 2005.
[68] Frequently asked questions - op-tee documentation. [On-

line]. Available: https://optee.readthedocs.io/en/3.10.0/faq/faq.html#
q-where-is-the-linux-kernel-tee-driver

[69] linaro-swg/linux: Linux kernel source tree. [Online]. Available:
https://github.com/linaro-swg/linux/

[70] L. Davi, D. Gens, C. Liebchen, and A.-R. Sadeghi, “Pt-rand: Practical
mitigation of data-only attacks against page tables,” in NDSS, 2017.

[71] (2020) Lkrg - linux kernel runtime guard. [Online]. Available:
https://www.openwall.com/lkrg/

[72] L. Zhou and Y. Makris, “Hardware-assisted rootkit detection via on-
line statistical fingerprinting of process execution,” in 2018 Design,
Automation Test in Europe Conference Exhibition (DATE), 2018.

[73] J. Götzfried, M. Eckert, S. Schinzel, and T. Müller, “Cache attacks on
intel sgx,” in Proceedings of the 10th European Workshop on Systems
Security, 2017.

[74] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx, “Breaking
Virtual Memory Protection and the SGX Ecosystem with Foreshadow,”
IEEE Micro, vol. 39, no. 3, pp. 66–74, 2019.

[75] S. Van Schaik, A. Kwong, D. Genkin, and Y. Yarom, “SGAxe: How
SGX Fails in Practice,” Https://Cacheoutattack.Com/, 2020.

[76] Bits, please! [Online]. Available: https://bits-please.blogspot.com/
[77] (2016) Bits, please!: Exploring qualcomm’s secure execution

environment. [Online]. Available: https://bits-please.blogspot.com/2016/
04/exploring-qualcomms-secure-execution.html

[78] (2016) Bits, please!: War of the worlds - hijacking the linux kernel
from qsee. [Online]. Available: https://bits-please.blogspot.com/2016/
05/war-of-worlds-hijacking-linux-kernel.html

[79] D. Rosenberg, “Reflections on trusting trustzone,” BlackHat USA, 2014.
[80] E. Sanfelix. (2019) Tee exploitation: Exploiting

trusted apps on samsung’s tee. [Online]. Avail-
able: https://downloads.immunityinc.com/infiltrate2019-slidepacks/
eloi-sanfelix-exploiting-trusted-apps-in-samsung-tee/TEE.pdf

[81] D. Shen, “Attacking your ”trusted core”: Exploiting trustzone on an-
droid,” Black Hat USA, 2015.

[82] D. Komaromy. (2018) Unbox your phone — part i. [Online]. Available:
https://medium.com/taszksec/unbox-your-phone-part-i-331bbf44c30c

[83] FSFE. Revisiting the sony rootkit. [Online]. Available: https:
//fsfe.org/activities/drm/sony-rootkit-fiasco.en.html

[84] B. Schneier. Man-in-the-middle attacks on lenovo computers.
[Online]. Available: https://www.schneier.com/blog/archives/2015/02/
man-in-the-midd 7.html

[85] S. Embleton, S. Sparks, and C. Zou, “Smm rootkits: A new breed of
os independent malware,” in Proceedings of the 4th International Con-
ference on Security and Privacy in Communication Netowrks. ACM,
2008.

[86] J. Schiffman and D. Kaplan, “The smm rootkit revisited: Fun with USB,”
in 2014 Ninth International Conference on Availability, Reliability and
Security, 2014.

[87] N. Zhang, R. Zhang, K. Sun, W. Lou, T. Y. Hou, and S. Jajodia,
“Memory forensic challenges under misused architectural features,”
IEEE Transactions on Information Forensics and Security, 2018.

[88] M. Schwarz, S. Weiser, and D. Gruss, “Practical enclave malware with
intel SGX,” CoRR, 2019.

[89] F. Pagani and D. Balzarotti, “Autoprofile: Towards automated profile
generation for memory analysis,” ACM Trans. Priv. Secur., vol. 25, 2021.

[90] S. Zhang, X. Meng, and L. Wang, “An adaptive approach for linux mem-
ory analysis based on kernel code reconstruction,” EURASIP Journal on
Information Security, vol. 2016, 2016.

[91] A. Case, L. Marziale, and G. Richard, “Dynamic recreation of kernel
data structures for live forensics,” Digital Investigation, vol. 7, 2010, the
Proceedings of the Tenth Annual DFRWS Conference.

[92] J. A. Pendergrass and K. N. McGill, “Lkim: The linux kernel integrity
measurer,” Johns Hopkins APL technical digest, 2013.

[93] Z. Qi, Y. Qu, and H. Yin, “Logicmem: Automatic profile generation for
binary-only memory forensics via logic inference,” 2022.


