Advanced Security for Systems Engineering – VO 06: Digital Forensics

Clemens Hlauschek, Christian Brem
Contents

Forensics – Anti-Forensics
 Political/Historical Context: End-to-end Encryption
 Forensic Science
 Acquire-Analyze-Present

Cryptographic Attacks and Limitations
 Common Attacks against Crypto
 Analysis of Encrypted Traffic
 Disk encryption
Forensics – Anti-Forensics
End-to-end Encryption Debate

- Australia passes **Assistance & Access Act** (December 2018): allows to secretly compel companies and individuals to re-engineer IT Systems for spying
- EU Council agrees on e-Evidence proposal (December 2018): access data
- **FBI vs Apple** encryption dispute (2016)
- **NSA/Snowden** (2013): Dual_EC_DRBG backdoor, etc
- **Crypto War**: Crypto export restrictions (until 1996), Clipper Chip, weak SSL keys, PGP, A5/1
CLEAR Proposal and Technical Discussion

Secure access to encrypted storage for 3rd parties without risking mass surveillance abuse?

- Ray Ozzie (2018): CLEAR Proposal: Key escrow, per-device key pair for encrypting passcode, access to device and vendor request necessary, secure hardware to ‘brick’ phone: forensic r/o lock mode.

- Savage: Lawful Device Access without Mass Surveillance Risk (CCS’18): self-escrow of access credentials in secure time-vaulting hardware

- Wright: Crypto Crumple Zones (EuroSP’18): proof-of-work based solution.
Traditionally, forensic science concerns itself with

- Gathering and analyzing of information on the past
- Using scientific methods
- To establish evidence to be used in court

Examples:

- Securing fingerprints, match to suspect
- Ballistic analysis, shooting reconstruction
- Analyzing plant pollen on clothes, establish geographic whereabouts
Digital Forensics can be defined as

the collection and analysis of data from computer systems, networks, digital devices and storage media to identify evidence for an investigation

- Often requires extensive domain knowledge
- Disclaimer: No legal advice in this lecture
Digital Forensics: Broad Range of Players

- Digital forensics primarily performed by / on behalf of government agencies
 - Law enforcement agencies (LEA)
 - Public prosecution department
 - Intelligence agencies

- But also in the commercial sector
 - Incidence response / damage evaluation after network intrusion
 - Gather evidence for litigation
 - Industrial espionage: analyze digital data from competitor
Digital Forensics: 3 Phases

- Acquisition
- Analysis
- Presentation

Acquisition and analysis phase dominated by technical issues, presentation phase depending very much on specific setting.
Digital Forensics: Acquisition Phase

Analogue: Take photographs of crime scene, fingerprints, blood-, DNA-samples, ...

- Copy all data to trusted storage device
- Seized device: modify device as little as possible
- Secure integrity of original data
- Calculate and store cryptographic hash of original data
Digital Forensics: Examples Analysis Phase

- Establish progression of events by analyzing
 - Logfiles
 - Browser history
 - Filesystem metadata

- Recover deleted, hidden, or encrypted files
- Analyze Content of network traffic, cookies, ...
- Examine communication, social network graph, ...
- Detect malware, backdoors, system modifications
Digital Forensics: Important Tools Analysis Phase

- Storage media data
 - EnCase
 - Forensic Toolkit (FTK)
 - SleuthKit

- Memory forensics
 - Volatility
 - Rekall

- Network forensics
 - Wireshark, tcpdump, ettercap, ...
Digital Forensics: Presentation Phase

- Heavily dependent on setting
- For use in a court of law:
 - Document chain of custody
 - Document all steps, methodology, in detail
- Sometimes: Parallel construction
 - Original evidence collected illegally
 - Or do not want to disclose method
 - Find a second, plausible narrative
 - Practice exposed for DEA (US)
 - Possibly used in Silkroad (online drug market) case
 - Can constitute perjury
Anti-Forensics

- The aim of anti-forensics is to
 - Disrupt the collection of information
 - Avoid the detection of events
 - Taunt the credibility and reliability of a forensic report
 - Mitigate effectiveness of forensic efforts
 - Add many man-hours and increase investigation costs

- Examples:
 - File wiping / HDD scrubbing
 - Encryption, steganography
 - Physical destruction (e.g., media, keys)
Cryptographic Attacks and Limitations
Common Attacks against Crypto

- Implementation errors
- Side-channel attacks, Fault injection
- Statistical attacks, attacks on traffic patterns
- Protocol Errors, Use of wrong cryptographic schemes
- Compromise infrastructure, trust anchors
Network Forensics: Analysis of Encrypted Traffic

How much Information can be extracted from a dump of encrypted network traffic?
(E.g., given a dump containing only HTTPS connections and encrypted VOIP calls originating from a suspect.)
How much information can be extracted from a dump of encrypted network traffic?
(E.g., given a dump containing only HTTPS connections and encrypted VOIP calls originating from a suspect.)

- Obviously Metadata:
 - HTTPS: Server visited. Exact time, duration of visits
How much Information can be extracted from a dump of encrypted network traffic?
(E.g., given a dump containing only HTTPS connections and encrypted VOIP calls originating from a suspect.)

- Obviously Metadata:
 - HTTPS: Server visited. Exact time, duration of visits
 - ZRTP: Endpoints (IP-Addresses) talked to. Duration of talk. Call attempts
Network Forensics: Analysis of Encrypted Traffic

How much Information can be extracted from a dump of encrypted network traffic?
(E.g., given a dump containing only HTTPS connections and encrypted VOIP calls originating from a suspect.)

- Obviously Metadata:
 - HTTPS: Server visited. Exact time, duration of visits
 - ZRTP: Endpoints (IP-Addresses) talked to. Duration of talk. Call attempts
 - ZRTP - Signaling Data (SIP) not encrypted. Usernames of called contacts. Phone-Numbers, etc
Network Forensics: Analysis of Encrypted Traffic

How much Information can be extracted from a dump of encrypted network traffic? (E.g., given a dump containing only HTTPS connections and encrypted VOIP calls originating from a suspect.)

- Obviously Metadata:
 - HTTPS: Server visited. Exact time, duration of visits
 - ZRTP: Endpoints (IP-Addresses) talked to. Duration of talk. Call attempts
 - ZRTP - Signaling Data (SIP) not encrypted. Usernames of called contacts. Phone-Numbers, etc

- Anything Else?
Network Forensics: Metadata

‘We Kill People Based on Metadata’

– Michael Hayden, former NSA director
Analysis of HTTPS Traffic: Website Fingerprinting

Even if traffic is encrypted, much information can be extracted.

- Size of requests
- Number of resources requested and loaded
- Timing of different loads

Reveals much information, often for reliable fingerprinting. Extract user behavior. Extract user profile. Associate blog entries, comments with user, etc.

Use machine learning techniques and statistical analysis.
VOIP often use Variable Bitrate (VBR) codecs due to performance and quality concerns.

Thus, encrypted VOIP traffic often leaks tremendous information.

Researchers [White'11] have been able to derive approximate transcripts of VOIP conversations using techniques from computational linguistics, speech recognition and machine learning.
Assume you collect encrypted traffic generated by a suspect. Later in the investigation, you get access to private keys of important endpoints.
Assume you collect encrypted traffic generated by a suspect. Later in the investigation, you get access to private keys of important endpoints.

Can you post-mortem decrypt the collected traffic?
Analysis of encrypted Traffic: Perfect Forward Secrecy

Assume you collect encrypted traffic generated by a suspect. Later in the investigation, you get access to private keys of important endpoints.

Can you post-mortem decrypt the collected traffic?

Usually not if **Perfect Forward Secrecy** was guaranteed by the cryptographic protocol.
Perfect Forward Secrecy (PFS) [Diffie'92]:

An authenticated key exchange protocol provides perfect forward secrecy if disclosure of long-term secret keying material does not compromise the secrecy of the exchanged keys from earlier runs.

It is a security property of an authenticated key exchange protocol.
PFS in SSL/TLS:

You do not have Perfect Forward Secrecy, if you use

- RSA-based handshake
- (EC)DH-based handshake ((Elliptic Curve) Diffie-Hellman handshake with static keys)

You have Perfect Forward Secrecy, if you use

- (EC)DHE-based handshake ((Elliptic Curve) Diffie-Hellman handshake with ephemeral keys)

Other important protocols that support PFS:
Off-the-Record Messaging (OTR), Secure Shell (SSH), Signal protocol
Disk encryption software

Systems like

- TrueCrypt (VeraCrypt, CipherShed)
- Dm-crypt
- Bitlocker
- PGP Whole Disk Encryption
- FileVault

allow on-the-fly encryption/decryption of disk partitions, as well as full disks – Full Disk Encryption (FDE)
Limits of Disk Encryption

If only data is encrypted,

- Swap partitions,
- Paging files,
- Hibernation files,
- Crash dumps

can reveal password or secret key data to the forensic analyst.

Therefore, Full Disk Encryption is often recommended.
Limits of Disk Encryption

Attack Vector: Encryption/Decryption Key usually resides in RAM (since we use on-the-fly encryption)

RAM acquisition techniques:

- DMA-devices often have unrestricted memory access.
 - Forensic firewire device
 - Forensic PCMCIA device
 - PCI device
Limits of Disk Encryption

Attack Vector: Encryption/Decryption Key usually resides in RAM (since we use on-the-fly encryption)

RAM acquisition techniques:

- Cold Boot attack:
 - DRAM retains state, even after power down.
 - 1. Reboot computer into minimal Live-OS
 - 2. Acquire memory image
 - 3. Corrupted bits from AES keys can be recovered.
Anti-Forensics FDE: Memory Acquisition, Cold Boot Attack

Protect against DMA-Attacks:

- Disable Firewire/PCMCIA kernel driver (Linux)
- Disable SRP-2 driver (MS Windows)
- Use Hypervisor with IOMMU (e.g., Xen 3.3). Allows DMA device restricted access to memory only

And:

- TRESOR, TreVisor: Runs encryption securely outside of RAM
- AES Key is loaded into, e.g., SSE registers, and never stored in RAM
Anti-Anti-Forensics FDE

- Evil Maid Attack
- Infect MBR, BIOS
- Sidechannel Attacks to retrieve password.
 - Sound: Reconstruct password from keyboard sound
 - Camera
 - Electro-magnetic emanations

By Force of Law and other methods.

- Password disclosure law
- Intimidation
- Torture
Anti-Anti-Anti-Forensics FDE

■ TPM, Secure/Trusted Boot
■ TEMPEST-shielded environment
■ Jamming against electro-magnetic (acoustic?) emanations

And also

■ k-factor authentication
■ Shared secret
■ Rubber-hose secure cryptography
Conclusion and Outlook

- Anti-Forensic / Cryptography very fragile
- Poor knowledge-transfer from theoretical cryptographers to system designers
- Help us change the situation: Make the Internet / digital devices more secure.
- Anonymity research / Tor, Cryptography, Privacy Enhancing Technologies, Exploit Mitigation
References and Links

- [Vaudenay’02] Vaudenay: Security Flaws Induced by CBC Padding. Applications to SSL, IPSEC, WTLS. EUROCRYPT’02
- [Canvel’03] Canvel, et al.: Password Interception in a SSL/TLS channel. CRYPTO’03.
- [Alfardan’12] Alfardan, Paterson: Plaintext-Recovery Attacks Against Datagram TLS. NDSS’12
References and Links

- Green: Why can’t Apple decrypt your iPhone?. Online Blogpost, 2014.
References and Links

- [Liberatore’06] Liberatore, Levine: Inferring the source of encrypted HTTP connections. CCS’06.
References and Links

References and Links

- [Lenstra’12] Lenstra, et al.: Ron was wrong, Whit is right. 2012
Thank you!

https://security.inso.tuwien.ac.at/