Advanced Security for Systems Engineering – VO 10: Applied Cryptography

Clemens Hlauschek Christian Brem

Threat Model: Passive vs Active

Threat Model

Passive: $m_i = m'_i$

Adversaries Capabilities

- Depend on exact model
 - Passive: eavesdropping
 - Active: tampering with, blocking, delaying, reordering messages
 - Advanced active: corrupting some peers, etc (multiparty setting)

- Mostly: Probabilistic Polynomial Time (PPT) adversary
- If unsure, use most conservative model/most powerful adversary
- Always assume active advesary in a networking setting

Important Notions

- Ciphertext Indistinguishablility
- Semantic Security
- Chosen Plaintext Attack
- Chosen Ciphertext Attack
- IND-CPA, IND-CCA2

Game-Based Security Definintions

Blackboard

Brainstorming Attacks

Common Attacks against Crypto

- Use of wrong protocol, insufficient security guarantees
- Protocol errors
- Implementation errors
- Side-channel attacks, Fault injection
- Statistical attacks, attacks on traffic patterns
- Compromise infrastructure, trust anchors

Which are Out-of-Model attacks?

Encryption Schemes

Encryption Algorithms: Keywords

- Symmetric, Secret-key: m = D(k, E(k, m))
 - 3DES, AES, (X)Salsa20, ChaCha
 - Fast, but Key Distribution problem
- Asymmetric, Public-key: m = D(sk, E(pk, m))
 - RSA, ElGamal, Elliptic Curves

Prove-Driven Design

From Oneway Function/PRP to Secure Cryptographic Scheme

- 1. Oneway function (with trapdoor)/pseudorandom permutation (PRP)
- 2. Hardness assumptions
- 3. Threat model and goals (IND-CCA, IND-CPA)
- 4. Secure cryptographic scheme with reduction to hardness assumption

RSA Cryptosystem

Assumption:

Hardness related to Integer Factorization problem

■ Basic Primitive:

- $N = p \cdot q \text{ with } p, q \in \mathbb{P}$
- lacktriangle Operations are computed $\mod N$
- \bullet sk:d pk:e with $e\cdot d=1$ $\mod \phi(N)$
- \blacksquare $E:m^e$
- $D:m^d$

■ Secure Scheme:

■ Never use plain (textbook) RSA, use OAEP or at least PKCSv1.5

IND-CCA Security for RSA: OAEP

ElGamal/Cramer-Shoup Cryptosystem

Assumption:

- Hardness of Discrete Logarithm, Decisional Diffie-Hellman (DDH)
- Basic Primitives (ElGamal)
 - $p \in \mathbb{P}$, g is generator of \mathbb{Z}_p
 - lacktriangle Operations are computed $\mod P$
 - \blacksquare sk:x $pk:g^x$ with x uniform random sampled in \mathbb{Z}_p
 - $E:(c_0=g^y,c_1=pk^y\cdot m)$ with y uniform sampled in \mathbb{Z}_p

■ Secure Scheme:

Cramer-Shoup extends Elgamal and is IND-CCA2 secure (DDH)

Electronic Codebook (ECB) Mode

Electronic Codebook (ECB) mode encryption

Electronic Codebook (ECB) mode decryption

Figure 1: https://blog.filippo.io/the-ecb-penguin/

Cipher Block Chaining (CBC) mode encryption

Cipher Block Chaining (CBC) mode decryption

6226

Literature/Links

- Jonathan Katz, Yehuda Lindell: Introduction to Modern Cryptography, CRC Press, 2014
- Vaudenay: Security Flaws Induced by CBC Padding. Applications to SSL, IPSEC, WTLS. EUROCRYPT'02
- Boeck, et al: Return Of Bleichenbacher's Oracle Threat (ROBOT), Usenix Sec'18
- NaCl Library, nacl.cr.yp.to
- Libsodium Library, libsodium.org
- [Boneh] Dan Boneh (Stanford): Online Cryptography Class. http://crypto-class.org

Thank's for your attention!

https://security.inso.tuwien.ac.at/