
INSO – Industrial Software
Institute of Information Systems Engineering | Faculty of Informatics | TU Wien

Advanced Security for Systems Engineering – VO 05:
Advanced Attacks on Applications 3

Clemens Hlauschek, Daniel Marth, Christian Brem

AdvSecSysEng WS22 | Advanced Attacks on Applications

Agenda

2 / 89

Stack Smashing and Shell Code writing

Stack Buffer Overflow

Writing Shellcode

Stack Smashing Mitigations And Circumvention

Vulnerable Functions

Mitigation Techniques

Circumventing W⊕X

Defeating ASLR

Circumventing Stack Canaries

More Classes of Vulnerabilites

Out-of-bounds Read

Race Condition

Format String Vulnerability

Integer Errors

AdvSecSysEng WS22 | Advanced Attacks on Applications

Capture-the-Flag Team defragmented.brains

3 / 89

■ Take part in many international

hacking competitions

■ Diverse bunch, different skills

and skill levels

■ Join our mailinglist:

ctf-join@inso.tuwien.ac.

at

■ Next CTF: HITCON 25.-27.11.

ctf-join@inso.tuwien.ac.at
ctf-join@inso.tuwien.ac.at

AdvSecSysEng WS22 | Advanced Attacks on Applications

Stack Smashing and Shell Code writing

4 / 89

AdvSecSysEng WS22 | Advanced Attacks on Applications

Stack Buffer Overflow: Recapitulation

5 / 89

Basic stack layout, a horizontal perspective

AdvSecSysEng WS22 | Advanced Attacks on Applications

Stack Buffer Overflow: Recapitulation

6 / 89

String spills out of buffer, overwrites saved return address.

AdvSecSysEng WS22 | Advanced Attacks on Applications

Stack Buffer Overflow: NOP-Sled

7 / 89

New return address needs to point to buffer: Exact location not known.

■ Prepend NOP-Sled to shellcode as “landing zone”

■ Make an educated guess for an address somewhere in the NOP-Sled

AdvSecSysEng WS22 | Advanced Attacks on Applications

Shellcode

8 / 89

It is called shellcode even if it does not spawn a shell.

■ Can do any arbitrary computation

■ Useful for an attacker:

■ Bind a shell to a network port

■ Connect back to an attacker

■ Load a post-exploitation framework

■ Start automated malware infection

■ A tiny, space-constrained shellcode can be used to load a more

powerful “second stage”

AdvSecSysEng WS22 | Advanced Attacks on Applications

Shellcode Writing

9 / 89

■ Many different

shellcodes

available

■ For successfull

exploitation, it is

often necessary

to be able to

write, debug, and

analyze shellcode

■ Best to write in

assembly

AdvSecSysEng WS22 | Advanced Attacks on Applications

Shellcode Writing: Challenges

10 / 89

Special challenges when executing on an indeterminate memory location

■ push operation can overwrite your shellcode

■ contingently adjust %esp register

■ Often, shellcode has to survive strcpy, etc

■ No null chars, alphanumeric, upper case shellcode, etc

During normal program building (and loading), the linker adjusts

addresses

■ String parameters delivered with the payload

■ But shellcode does not know its address

AdvSecSysEng WS22 | Advanced Attacks on Applications

Shellcode Writing: Locating Parameters

11 / 89

Trick: How to locate string parameter (e.,g., "/bin/sh")

■ Insert call right before

"/bin/sh"

■ Use jmp to jump to call

■ call pushes %eip on stack

■ After pop, address of

’/bin/sh’ in %eax

1 jmp s h o r t L1

2 L2 :

3 pop %eax

4 . . .

5 . . .

6 L1 :

7 c a l l L2

8 . s t r i n g ’ / b i n / sh ’

9

AdvSecSysEng WS22 | Advanced Attacks on Applications

Shellcode Writing: Example Linux/x86

12 / 89

1 jmp 32 // r e l a t i v e jump (to l i n e 14)

2 pop %e s i // p o i n t e r to ”/ u s r / b i n /vim” now i n %e s i

3 xo r %eax , %eax

4 movb $0x0 , 0 xc(% e s i) // p r e pa r e arguments f o r s y s e x e c v e

5 mov %e s i , 0xd(% e s i)

6 movl $0x0 , 0x11(% e s i)

7 mov %e s i , %ebx

8 l e a 0 xc(% e s i) , %ecx

9 l e a 0xd(% e s i) , %edx

10 movb $0xb , %a l // c a l l to s y s e x e c v e v i a i n t 8 0

11 i n t $0x80

12 movb $0x1 ,% a l // c a l l to s y s e x i t v i a i n t 8 0

13 i n t $0x80

14 c a l l −36 // r e l a t i v e c a l l (l i n e 2) , pushes %e i p

15 ”/ u s r / b i n /vim”

AdvSecSysEng WS22 | Advanced Attacks on Applications

Stack Smashing Mitigations And Circumvention

13 / 89

AdvSecSysEng WS22 | Advanced Attacks on Applications

Buffer Overflow: Some Dangerous C Standard Library

Functions

14 / 89

■ strcpy - copy buffers

■ memcpy, memmove - copy buffers

■ strcat - join 2 strings

■ sprintf, vsprintf - print a string into another string

■ getpw - reconstruct password-line entry

■ gets - read a string from stdin

■ scanf - read and convert a string from stdin

■ fscanf - read and convert a string from a file pointer

■ Pointer arithmetic

AdvSecSysEng WS22 | Advanced Attacks on Applications

Buffer Overflow: More Dangerous C Library Functions

15 / 89

■ Safer Alternatives:

strncpy, strncat, snprintf, vsnprintf, fgets

■ Wide Character Strings:

wcscpy, wmemcpy, wcscat, wcsncpy, fgetws

■ Conversion:

wcstombs, mbtowc, asctime_s, ctime_s, c16rtomb, c32rtomb

■ Non-ISO C:

read, bcopy, strlcpy, strlcat,

AdvSecSysEng WS22 | Advanced Attacks on Applications

Buffer Overflow Countermeasures: Developer and Tester

16 / 89

■ Correct and secure programming paramount

■ Correct input validation and length-verification

■ Test for buffer overflow vulnerabilities

■ Static code analysis

■ Dynamic methods

■ Fuzz testing

■ Hybrid Methods

■ Code review

■ Avoid dangerous functions (Use variants: strncpy, strncat, . . .)

■ Use type-safe programming languages

AdvSecSysEng WS22 | Advanced Attacks on Applications

Buffer Overflow Countermeasures: Compiler and OS

17 / 89

■ Non-executable stacks and heap

■ Data Execution Prevention (DEP)

■ W⊕X: Write XOR Execute

■ Randomized memory layout

■ Address Space Layout Randomization (ASLR)

■ Compiled-in stack protection

■ Stack canary

■ Variable re-ordering

AdvSecSysEng WS22 | Advanced Attacks on Applications

Buffer Overflow Countermeasures: Advanced

18 / 89

■ Shadow Stack

■ Pointer Integrity

■ Control-flow Integrity

■ Fine-Grained ALSR

Implement research prototypes as part of your ’Projektpraktikum’ (12

ECTS) and/or Master Thesis.

AdvSecSysEng WS22 | Advanced Attacks on Applications

Stack Smashing Recap

19 / 89

1. Return address overwritten

with address pointing inside

buf on stack.

2. During function return (ret

instruction), return address

gets popped into %eip register

3. Instruction pointer (%eip)

points into stack

4. Data on stack is interpreted as

CPU instruction and executed

AdvSecSysEng WS22 | Advanced Attacks on Applications

Stack Smashing Recap

20 / 89

■ Non-control flow instructions

increment the instruction

pointer (%eip), so that it

points to the next instruction

■ Data at higher address is

interpreted as instruction and

executed

AdvSecSysEng WS22 | Advanced Attacks on Applications

Stack Smashing Recap

21 / 89

■ Non-control flow instructions

increment the instruction

pointer (%eip), so that it

points to the next instruction

■ Data at higher address is

interpreted as instruction and

executed

AdvSecSysEng WS22 | Advanced Attacks on Applications

Stack Smashing: jmp %ebx Trick

22 / 89

Assume on function return, any

register (e.g., ebx), points to

beginning of buffer

■ Locate opcode for jmp *%ebx

in process’ memory

■ Overwrite return address with

location of this opcode

■ Reliable jump into shellcode without NOP-Sled.

■ Useful if buffer is too small for NOP-Sled

AdvSecSysEng WS22 | Advanced Attacks on Applications

W⊕X Protection

23 / 89

Write XOR eXecute protection (as part of DEP in Windows)

■ Memory region is either writeable or executable, but not both

■ Prevent any user-injected code from being executed

■ Hardware Support: NX Bit

Circumvention: Return-into-text, Return-into-libc, ROP

AdvSecSysEng WS22 | Advanced Attacks on Applications

W⊕X Circumvention: Return-into-text

24 / 89

Redirect control flow to a useful

function in the .text (code-)

section

AdvSecSysEng WS22 | Advanced Attacks on Applications

W⊕X Circumvention: Return-into-libc

25 / 89

■ We can return into any function of any library the process is linked

with

■ We can also pass arguments, e.g. "/bin/sh" to system

AdvSecSysEng WS22 | Advanced Attacks on Applications

Return-into-libc: Function Chaining

26 / 89

Several function can be chained together.

AdvSecSysEng WS22 | Advanced Attacks on Applications

Return Oriented Programming (ROP)

27 / 89

■ ROP takes Return-into-libc to the next level

■ Return-into-libc not always possible:

■ Parameters passed via registers (e.g., x86 64 arch)

■ Library mapping effectively randomized

■ Library address contains 0x00 byte

■ Return into sequence of instructions (“gadgets”) ending with ret

■ xor %eax, %eax ; ret

■ inc %eax ; ret

■ Achieve arbitrary (Turing complete) computation with

gadget-chaining

AdvSecSysEng WS22 | Advanced Attacks on Applications

Ordinary Programming: Machine Level

28 / 89

■ Instruction pointer (%eip)

determines instruction to

execute next

■ Automatical increment of %eip

■ Change control flow by

changing value of %eip

AdvSecSysEng WS22 | Advanced Attacks on Applications

Return Oriented Programming: Machine Level

29 / 89

■ Sequence of cpu instruction

constitute logical instruction

■ Stack pointer (%esp)

determines next instruction to

execute

■ ret at end of gadgets

increments %esp

■ Control flow change by

manipulating %esp

AdvSecSysEng WS22 | Advanced Attacks on Applications

Return Oriented Programming: NOP Gadget

30 / 89

ret

■ A pointer to

the opcode

C3 (ret)

AdvSecSysEng WS22 | Advanced Attacks on Applications

Return Oriented Programming: Immediate Gadget

31 / 89

■ A pointer to

the code

sequence

pop %ebx ; ret

■ pop %ebx

will load the

next dword

into %ebx

■ %esp is incremented by both the pop and the ret instruction

AdvSecSysEng WS22 | Advanced Attacks on Applications

Return Oriented Programming

32 / 89

■ Search for gadgets: upwards in code, starting from return instructions

(Opcode C3 on x86)

■ Collect gadgets in TRIE data structure

■ Automate ROP with compiler to produce Return Oriented Programs

■ Python Tool to facilitate ROP exploitation: ROPgadget

AdvSecSysEng WS22 | Advanced Attacks on Applications

Return Oriented Programming: Summary

33 / 89

■ Turing complete

■ Induce arbitrary behavior without injecting code.

■ Defeat W⊕X, Code signing, Trusted Computing and Code

Attestation, ...

■ ROP vs return-into-libc: - ROP also works with different calling

conventions (e.g., amd64: function arguments in registers)

■ Works on different architectures: SPARC, ARM, ...

■ However: base address of text, lib must be known.

AdvSecSysEng WS22 | Advanced Attacks on Applications

ASLR

34 / 89

Idea: Defend against ROP, return-into-libc attacks

With each execution, randomize the

■ load address of libraries and

■ code-segment (text),

■ the start address of the stack

■ data segement, and

■ the heap.

AdvSecSysEng WS22 | Advanced Attacks on Applications

Defeating ASLR: 3 Strategies

35 / 89

■ Process not fully randomized

■ Determine address of library call by Brute Force

■ Exploit an Information Leak

AdvSecSysEng WS22 | Advanced Attacks on Applications

Beating ASLR: Process not fully randomized

36 / 89

■ Executable must be compiled as

Position Independent Executable (PIE)

■ Non-PIE binaries are protected only against trivial return-into-libc

attacks

■ Otherwise: return-to-text, ROP

■ PIE: Performance overhead 5-10% on x86 (32 Bit)

■ Any library at fixed address open possibility for ROP attacks.

■ Example: Linux Virtual Dynamic linked Shared Object (VDSO)

(Interface to kernel space) was not randomized for a long time.

AdvSecSysEng WS22 | Advanced Attacks on Applications

Beating ASLR: Brute Forcing ASLR

37 / 89

■ Entropy on x86 too low to be effective: 10-16 Bit for library load

address

■ Bruteforce normally possible on x86 over network.

■ Of course, process must still be alive after crash, or respawn.

■ Processes that fork and afterwards call execve also exploitable: just

one more Bit of entropy.

AdvSecSysEng WS22 | Advanced Attacks on Applications

Beating ASLR: Information Leak

38 / 89

Use vulnerability to reveal memory content.

Examples:

■ Windows: Modify BSTR length.

■ Windows: Modify Array object length.

Overwrite length field of those objects to reveal memory content.

More Examples:

■ Format String Vulnerability

■ Out-of-Bound Read

AdvSecSysEng WS22 | Advanced Attacks on Applications

Stack Overflow Mitigation: Stack Canary

39 / 89

■ During function prologue, a random canary value is placed after

return address.

■ Before function returns, canary value is checked and overflow

detected.

AdvSecSysEng WS22 | Advanced Attacks on Applications

Fixed Stack Canary vs Random Canary

40 / 89

■ Fixed: 0x000a0dff

■ Stops most string operations

■ Does little to prevent memcpy and direct pointer arithmetic

corruptions

■ Randomized

■ Different for each process execution

■ Randomized XOR

■ Randomized and XOR control flow data

AdvSecSysEng WS22 | Advanced Attacks on Applications

Stack Canary: Example Problem 1

41 / 89

What is the problem here?

1 i n t a u t h e n t i c a t e (char ∗ username , char ∗ password) {

2 i n t auth = 0 ;

3 char b u f f e r [6 4] ;

4

5 i f (auth = v e r i f y (username , password))

6 s p r i n t f (b u f f e r , ” succ auth : %s ” , username) ;

7 e l s e

8 s p r i n t f (b u f f e r , ” auth f a i l : %s ” , username) ;

9

10 . . .

11

12 r e t u r n auth ;

13 }

AdvSecSysEng WS22 | Advanced Attacks on Applications

Stack Canary: Local Variable Overwrite

42 / 89

■ Return address need not be overwritten for successful attack

■ Thus, canary value is never corrupted

■ Attack succeeds without detection

AdvSecSysEng WS22 | Advanced Attacks on Applications

Stack Canary: Example Problem 2

43 / 89

What is the problem with this code?

1 i n t f (cha r ∗∗ argv) {

2

3 char ∗ p t r ;

4 char b u f f e r [6 4] ;

5

6 p t r = b u f f e r ;

7 memcpy (pt r , a rgv [1] , 128) ;

8

9 . . .

10

11 s t r n c p y (pt r , a rgv [2] , 16) ;

12

13 . . .

14 }

AdvSecSysEng WS22 | Advanced Attacks on Applications

Stack Canary: Overwrite pointer

44 / 89

■ Attacker can overwrite ptr with the memcpy call

■ With the strncpy call, attacker can write to any memory location,

without touching the canary

AdvSecSysEng WS22 | Advanced Attacks on Applications

Stack Canary: Problem Example 3

45 / 89

1 i n t g (char ∗ s t r) {

2

3 char b u f f e r [6 4] ;

4 char ∗ p t r ;

5 i n t i ;

6

7 s t r c p y (b u f f e r , s t r) ;

8 p t r=b u f f e r [0] ;

9

10 f o r (i =0; i <64; i++) {

11 ∗(p t r++)=touppe r (∗ p t r) ;

12 }

13 s t r c p y (s t r , b u f f e r) ;

14

15 . . .

16 i f (. .) e x i t (1) ;

17 }

AdvSecSysEng WS22 | Advanced Attacks on Applications

Stack Canary: Overwrite Argument

46 / 89

Attacker can overwrite the argument str with the first strcpy.

With the second strcpy, attacker can overwrite any address in memory.

Patching the exit call by overwriting the entry in the

Global Offset Table (GOT) (Windows: Import Address Table (IAT))

allows gaining control of execution before the canary is checked.

AdvSecSysEng WS22 | Advanced Attacks on Applications

Recap: Frame Pointer

47 / 89

Frame pointer of previous caller is stored just after return address.

AdvSecSysEng WS22 | Advanced Attacks on Applications

Stack Protection: Frame Pointer

48 / 89

Frame pointer is used to access local variables and arguments.

■ %ebp+8 to address first argument

■ %ebp-offset to address local variable

Overwriting the frame pointer (%ebp) thus “places” arguments and local

variables to other memory region.

Thus, saved frame pointer needs protection too.

AdvSecSysEng WS22 | Advanced Attacks on Applications

Stack Protection: Shadow Stack

49 / 89

Proposed Solution: Shadow Stack

■ During function prologue, return address is saved on a “shadow

stack”

■ During function epilogue, return address is restored from shadow

stack.

Can be trivially extended to protect the saved frame pointer.

AdvSecSysEng WS22 | Advanced Attacks on Applications

Stack Protection: Variable Re-ordering

50 / 89

Stack protection evolved to mitigate against these attacks.

■ Buffers are placed after pointers

■ Arguments are copied after local variables

However, stack buffer overruns remain still exploitable sometimes.

■ Complexity; No simple solution

AdvSecSysEng WS22 | Advanced Attacks on Applications

Bruteforcing Random Stack Canary: Preconditions

51 / 89

If

■ a program forks (e.g., a network daemon to handle requests),

memory space is copied, and

■ the child process does not call execve, the randomized stack canary

stays the same, and

■ the attacker can determine whether his exploit crashed the child (via

log-message, timing channel, etc.),

then the stack canary value can be easily determined.

AdvSecSysEng WS22 | Advanced Attacks on Applications

Bruteforcing Random Stack Canary

52 / 89

The buffer is overflowed until the first byte of the canary is corrupted.

The attacker iterates over this last byte from 0− 255 by sending new

exploits.

AdvSecSysEng WS22 | Advanced Attacks on Applications

Bruteforcing Random Stack Canary

53 / 89

If the child process did not crash, he guessed the first byte correct.

AdvSecSysEng WS22 | Advanced Attacks on Applications

Bruteforcing Random Stack Canary

54 / 89

The attacker continues to probe the second byte.

AdvSecSysEng WS22 | Advanced Attacks on Applications

Bruteforcing Random Stack Canary

55 / 89

He eventually finds the second byte, and continues to probe the next

byte, etc.

A 32 Bit canary can thus be found with max 4 · 256 tries (4 · 128

expected value).

AdvSecSysEng WS22 | Advanced Attacks on Applications

Overwrite Exception Handler

56 / 89

Windows stores pointers to exception handlers on the stack.

■ Overwrite exception handler with new pointer

■ If Exception is thrown before the function returns, attacker takes over

program control before stack canary is checked.

■ In many cases, the attacker is able to provoke an exception.

Mitigation: SafeSEH: All valid exceptions are registered in a function

table.

AdvSecSysEng WS22 | Advanced Attacks on Applications

Summary: Defeating Stack Protection

57 / 89

■ Brute force canary

→ Works if process forks and child does not call execve

■ Indirect write to arbitrary memory locations: RET, GOT / IAT, dtor,

vtable

→ RELRO and BIND NOW protects some of these locations in Linux

■ Overwrite exception handler

→ Easy if SafeSEH is not activated in Windows.

■ For performance reason, usually not all functions are protected

against stack overflows

-fstack-protector-all vs. -fstack-protector vs.

-fstack-protector-strong in gcc

AdvSecSysEng WS22 | Advanced Attacks on Applications

More Classes of Vulnerabilites

58 / 89

AdvSecSysEng WS22 | Advanced Attacks on Applications

Heartbleed

59 / 89

AdvSecSysEng WS22 | Advanced Attacks on Applications

Out-of-bounds Read

60 / 89

■ Read beyond the memory of an allocated buffer

■ Cause: Lack of correct bounds checking

■ Information disclosure vulnerability, but can be disastrous

Heartbleed Bug (disclosed April 2014)

■ Programming error in openssl library

■ Length field in heartbeat packet attacker controlled

■ No comparision with actual received record size

■ Read up to 64Kb memory adjacent to s->s3->rrec.data

■ Extract private keys, passwords, etc. from memory

■ Heartbleed affected an estimated 24-55% of HTTPS server

AdvSecSysEng WS22 | Advanced Attacks on Applications

Race Condition: access/open TOCTTOU

61 / 89

Victim (installed setuid-root)

1 i f (a c c e s s (” f i l e ” , W OK) != 0)

2 {

3 e x i t (1) ;

4 }

5

6

7

8 f d = open (” f i l e ” , O WRONLY) ;

9

10

11

12 w r i t e (fd , b u f f e r ,

13 s i z e o f (b u f f e r)) ;

Unix access syscall

■ Solved Confused Deputy

problem

■ Introduced Time Of Check

To Time Of Use races

AdvSecSysEng WS22 | Advanced Attacks on Applications

Race Condition: access/open TOCTTOU

62 / 89

Victim (installed setuid-root)

1 i f (a c c e s s (” f i l e ” , W OK) != 0)

2 {

3 e x i t (1) ;

4 }

5

6

7

8 f d = open (” f i l e ” , O WRONLY) ;

9

10 // A c t u a l l y w r i t i n g ove r

11 // / e t c /shadow

12 w r i t e (fd , b u f f e r ,

13 s i z e o f (b u f f e r)) ;

Attacker

1

2

3 . . .

4 // A f t e r the a c c e s s check

5 s ym l i nk (”/ e t c /shadow” , ” f i l e ”) ;

6 // Be fo r e the open , ” f i l e ”

7 // p o i n t s to / e t c /shadow

8 . . .

AdvSecSysEng WS22 | Advanced Attacks on Applications

Race Condition: access/open TOCTTOU

63 / 89

Victim (installed setuid-root)

1 i f (a c c e s s (” f i l e ” , W OK) != 0)

2 {

3 e x i t (1) ;

4 }

5

6

7

8 f d = open (” f i l e ” , O WRONLY) ;

9

10 // A c t u a l l y w r i t i n g ove r

11 // / e t c /shadow

12 w r i t e (fd , b u f f e r ,

13 s i z e o f (b u f f e r)) ;

Attack (general outline)

1 // Let the v i c t im run

2 i f (f o r k () == 0)

3 system (” v i c t im ”) ;

4 u s l e e p (1) ; // Y i e l d CPU

5 // sw i t c h t a r g e t

6 u n l i n k (” f i l e ”)

7 s ym l i nk (”/ e t c /shadow” , ” f i l e ”) ;

AdvSecSysEng WS22 | Advanced Attacks on Applications

Race Condition: TOCTTOU

64 / 89

Time Of Check Time Of Use races

■ Concurrent processes: setuid program, privileged server

■ Access to shared resources: filesystem, sockets, database

■ Often difficult to spot and reproduce

Exploiting TOCTTOU races: scheduler needs to switch at the right

instruction to attacker’s process

■ Bruteforce

■ Filesystem maze

■ Algorithmic complexity attacks

AdvSecSysEng WS22 | Advanced Attacks on Applications

Race Condition: TOCTTOU Mitigation

65 / 89

Countermeasures examples:

■ Kernel run-time detection and prevention (state management

problem)

■ Security test: data and control flow analysis tools

■ Transactional file system

■ Use not-portable, secure functions

■ fork/setuid/open + IPC

■ Atomic operations, concurrency control

AdvSecSysEng WS22 | Advanced Attacks on Applications

Race Condition: CVE-1999-0861

66 / 89

Race condition in SSL / MS Internet Information Services (IIS)

■ Sending an encrypted message

■ Correct sequence

1. load plain text into buffer

2. encrypt buffer

3. send data from buffer

■ Error at high load

1. load plain text into buffer

2. send data from buffer

3. encrypt buffer

AdvSecSysEng WS22 | Advanced Attacks on Applications

Race Condition: Smartcards PIN Bruteforce

67 / 89

Smartcards need to protect against

PIN bruteforcing:

1. Counter initialized to 3

2. If wrong PIN, then decrement

counter

3. If counter 0, lock card

4. If PIN correct, reset counter

Secure?

Brute force attack, racing:

1. Enter PIN

2. Check if PIN is correct (e.g.,

using a side channel)

3. Before counter on card is de-

creased, pull power plug

Countermeasure:

■ Decrease counter before checking PIN

AdvSecSysEng WS22 | Advanced Attacks on Applications

Format String Functions

68 / 89

printf("error in line %i: %s", linenr, errorstring);

■ Use format control strings to generate output strings

■ Functions: printf family (fprintf, sprintf, ...)

■ Different format control characters, see man sprintf

■ integer: %d, %i, %o, %u, %x

■ float: %e, %f, %g, %a

■ character: %c

■ string: %s

AdvSecSysEng WS22 | Advanced Attacks on Applications

Format String Vulnerability

69 / 89

■ User data is directly passed

to printf

■ Attacker can provide format

string

■ Correct implementation is

printf("%s", argv[1]);

1 #i n c l u d e <s t d i o . h>

2 #i n c l u d e < s t r i n g . h>

3

4 i n t

5 main (i n t argc , cha r ∗ argv [])

6 {

7 p r i n t f (a rgv [1]) ;

8 }

■ Easy to test for and to find automatically in many cases

(compile-time checking)

■ Dynamic format string generation, cross-application format string

dangerous

AdvSecSysEng WS22 | Advanced Attacks on Applications

Recap: Stack Layout, Function Parameters

70 / 89

1 vo i d g ray ()

2 {

3 . . .

4 y e l l ow (a1 , a2) ;

5 . . .

6 }

7

8 i n t y e l l ow (i n t p1 , i n t p2)

9 {

10 char buf [3] ;

11 i n t l1 , l 2 ;

12 . . .

13 l2 = printf(”int: %i, str: %s”, l1, buf);

14 r e t u r n l 2 ;

15 }

AdvSecSysEng WS22 | Advanced Attacks on Applications

Format String Vulnerability: Read Stack Content

71 / 89

■ Format function

assumes all

parameters are

correctly pushed to

the stack

■ Attacker can read

the whole stack

content

$. / format AAAA.%x.%x.%x

AAAA.8049 f f 4 . b f f f f 8 b 8 .8048459

$. / format ”AAAA.%3$x”

AAAA.8048459

$. / format ‘ p e r l −e ’ p r i n t ”%08x . ” x1000 ’ ‘

. . . 4 1 007461 . 4 1414141 . 25414141 . 2 e783830 . . .

Parameter %n allows write: Control flow hijacking possible

AdvSecSysEng WS22 | Advanced Attacks on Applications

Format String Vulnerability

72 / 89

■ Read (arbitrary) memory locations

■ Confidential informations in memory

■ Confidential keys, passwords, . . .

■ Write to any memory location

■ Overwrite addresses (return address, . . .)

■ Control flow hijacking

■ Arbitrary code execution

AdvSecSysEng WS22 | Advanced Attacks on Applications

Integer Overflow

73 / 89

■ n-bit (register!) arithmetic 6=

(∞-bit) arithmetic

■ Many languages: C, C++,

Java, C#, Go

■ Sometimes intentional

■ Sometimes very difficult to

catch

AdvSecSysEng WS22 | Advanced Attacks on Applications

Integer Overflow: Example Intentional Wrap

74 / 89

Linear Congruential PRNG

1 #de f i n e IA 1103515245u

2 #de f i n e IC 12345u

3 #de f i n e IM 2147483648u

4

5 s t a t i c uns i gned i n t c r and = 0 ;

6

7 /∗ Cr e a t e s a random i n t e g e r [0 . . . imax] (i n c l u s i v e) ∗/

8 i n t my i rand (i n t imax) {

9 i n t i v a l ;

10 /∗ c r and = (c r and ∗ IA + IC) % IM ; ∗/

11 c r and = c rand ∗ IA + IC ; // Use o v e r f l ow to wrap

12 i v a l = c rand & (IM − 1) ; /∗ Modulus ∗/

13 i v a l = (i n t) ((f l o a t) i v a l ∗ (f l o a t) (imax + 0 .999)

14 / (f l o a t) IM) ;

15 r e t u r n i v a l ;

16 }

AdvSecSysEng WS22 | Advanced Attacks on Applications

Integer Overflow: Malformed Checks

75 / 89

1 s t r u c t DS {

2 . . .

3 i n t num ;

4 i n t v a l u e s [] ;

5 }

6 . . .

7 // t h i s check i s malformed

8 i f (num > INT MAX / s i z e o f (i n t)

9 − s i z e o f (DS))

10 goto f a i l ;

11 // heap o v e r f l ow p o s s i b l e

12 . . . = ma l l o c (s i z e o f (DS) +

13 num ∗ s i z e o f (i n t)) ;

■ Magic values hard to maintain:

datastructure might change!

■ Often: Incorrect check

■ Check to avoid overflow of

form a+ x ∗ b > MAX:

x > (MAX − a)/b

AdvSecSysEng WS22 | Advanced Attacks on Applications

Integer Vulnerability

76 / 89

Netscape vulnerability

1 vo i d getComm(uns i gned i n t l en , cha r ∗ s r c)

2 {

3 uns i gned i n t s i z e ;

4

5 s i z e = l e n − 2 ;

6

7 char ∗comm = (char ∗) ma l l o c (s i z e + 1) ;

8 memcpy(comm, s r c , s i z e) ;

9 r e t u r n ;

10 }

What can go wrong

here?

AdvSecSysEng WS22 | Advanced Attacks on Applications

Integer Vulnerability: Underflow

77 / 89

Netscape vulnerability

1 vo i d getComm(uns i gned i n t l en , cha r ∗ s r c)

2 {

3 uns i gned i n t s i z e ;

4

5 s i z e = l e n − 2 ;

6

7 char ∗comm = (char ∗) ma l l o c (s i z e + 1) ;

8 memcpy(comm, s r c , s i z e) ;

9 r e t u r n ;

10 }

■ (len− 2) can

underflow:

1− 2 = 232 − 1

■ ... so that (size+1)

can overflow:

(232 − 1) + 1 = 0

AdvSecSysEng WS22 | Advanced Attacks on Applications

Integer Vulnerability: Underflow

78 / 89

Netscape vulnerability

1 vo i d getComm(uns i gned i n t l en , cha r ∗ s r c)

2 {

3 uns i gned i n t s i z e ;

4

5 s i z e = l e n − 2 ;

6

7 char ∗comm = (char ∗) ma l l o c (s i z e + 1) ;

8 memcpy(comm, s r c , s i z e) ;

9 r e t u r n ;

10 }

■ (len− 2) can

underflow:

1− 2 = 232 − 1

■ ... so that (size+1)

can overflow:

(232 − 1) + 1 = 0

■ and an attacker may

corrupt the heap

AdvSecSysEng WS22 | Advanced Attacks on Applications

Integer Vulnerability

79 / 89

1 s t r u c t d c on p l a t f o rm da t a { . . .

2 u8 (∗ r e a d s t a t u s) (vo i d) ;

3 } ;

4 /∗ −>r e a d s t a t u s () imp l ementa t i on ∗/

5 s t a t i c u8 d c o n r e a d s t a t u s x o 1 5 (vo i d)

6 {

7 i f (! d c on wa s i r q ())

8 r e t u r n −1;

9 . . .

10 }

11 s t a t i c

12 s t r u c t d c on p l a t f o rm da t a ∗ pdata = . . . ;

13 i r q r e t u r n t d c o n i n t e r r u p t (. . .)

14 {

15 i n t s t a t u s = pdata−>r e a d s t a t u s () ;

16 i f (s t a t u s == −1)

17 r e t u r n IRQ NONE ;

18 . . . }

Linux Kernel bug in

OLPC display driver:

What is happening here?

AdvSecSysEng WS22 | Advanced Attacks on Applications

Integer Vulnerability: Sign misrepresentation

80 / 89

1 s t r u c t d c on p l a t f o rm da t a { . . .

2 u8 (∗ r e a d s t a t u s) (vo i d) ;

3 } ;

4 /∗ −>r e a d s t a t u s () imp l ementa t i on ∗/

5 s t a t i c u8 d c o n r e a d s t a t u s x o 1 5 (vo i d)

6 {

7 i f (! d c on wa s i r q ())

8 r e t u r n −1;

9 . . .

10 }

11 s t a t i c

12 s t r u c t d c on p l a t f o rm da t a ∗ pdata = . . . ;

13 i r q r e t u r n t d c o n i n t e r r u p t (. . .)

14 {

15 i n t s t a t u s = pdata−>r e a d s t a t u s () ;

16 i f (s t a t u s == −1)

17 r e t u r n IRQ NONE ;

18 . . . }

■ status can never

get negative.

■ read_status

returns −1 = 0xff

■ 0xff gets

zero-extended:

0x000000ff

■ Error handling fails

AdvSecSysEng WS22 | Advanced Attacks on Applications

Integer Vulnerability: Truncation

81 / 89

1 i n t

2 d e t e c t a t t a c k (u cha r ∗buf , i n t l en ,

3 u cha r ∗ IV)

4 {

5 s t a t i c word16 ∗h = . . . ;

6 s t a t i c word16 n = . . . ;

7 word32 l ;

8 . . .

9 i f (h == NULL) {

10 debug (” I n s t a l l c r c a t t a c k ”\

11 ” d e t e c t o r . ”) ;

12 n = l ;

13 h = (word16 ∗) xma l l o c (n ∗

14 s i z e o f (word16)) ;

15 }

16 . . .

17 }

■ Example:

CVE-2001-0144,

SSH

■ n and l different

types

■ Assignment n = l

could cause a

truncation

■ Results in

exploitable heap

corruption

AdvSecSysEng WS22 | Advanced Attacks on Applications

Integer Vulnerabilities: Mitigation

82 / 89

■ Correct checks

■ Automated testing tools: e.g., KINT

■ Use type-safe types

■ SafeInt library (C++)

■ BigInteger (Java)

■ Java SE8: Integer Arithmetic Overflow/Underflow Detection API

■ Math.addExact, Math.incrementExact, ...

■ throws ArithmeticException

AdvSecSysEng WS22 | Advanced Attacks on Applications

Integer Vulnerabilities: Summary

83 / 89

Classes of bugs:

■ Integer Overflow

■ Integer Underflow

■ Signedness Error

■ Truncation

Exploit

■ Denial of Service: Bypass error checking, etc

■ Logical Flaw: Bypass Authentication Routine, etc

■ Memory Corruption: Often incorrect heap allocation

AdvSecSysEng WS22 | Advanced Attacks on Applications

Heap Corruption

84 / 89

■ Heap Overflow

■ Use After Free

■ Double Free

■ Integer error

■ Signal Race

AdvSecSysEng WS22 | Advanced Attacks on Applications

Literature / Links

85 / 89

■ Marth (2018): Memory Corruption Tutorial.

https://www.proggen.org/doku.php?id=security:memory-

corruption:start

■ Saito (2016): A Survey of Prevention/Mitigation against Memory

Corruption Attacks.

■ Borisov (2005): Fixing Races for Fun and Profit: How to abuse

atime, Usenix Security.

■ Cai (2009): Exploiting Unix File-System Races via Complexity

Attacks, Oakland.

■ Scut (2001): Exploiting Format String Vulnerabilities.

■ Google Project Zero: http://googleprojectzero.blogspot.co.at/

AdvSecSysEng WS22 | Advanced Attacks on Applications

Literature / Links

86 / 89

■ Brumley (2007): RICH: Automatically Protecting Against

Integer-Based Vulnerabilities. NDSS.

■ Dietz (2012): Understanding Integer Overflow in C/C++. ICSE.

■ Wang (2012): Improving Integer Security for Systems with KINT.

OSDI.

■ Corelan Team: Exploit writing tutorial part 6 : Bypassing Stack

Cookies, SafeSeh, SEHOP, HW DEP and ASLR.

■ Meer (2010): Memory Corruption Attacks. The Almost Complete

History. BlackHat.

AdvSecSysEng WS22 | Advanced Attacks on Applications

Literature / Links

87 / 89

■ Solar Designer (1997): Getting around non-exectuable stack.

BuqTraq.

■ Nergal (2001): Advanced return-into-lib(c) exploits. Phrack 58-4.

■ Shacham (2012): Return-Oriented Programing: Systems, Languages,

and Applications

■ Shacham (2004): On the effectiveness of Address-Space

Randomization.

AdvSecSysEng WS22 | Advanced Attacks on Applications

Literature / Links

88 / 89

■ Bulba and Kil3r (2000): Bypassing Stackguard and Stackshield,

Phrack 56.

■ Richarte (2002): Four different tricks to bypass Stackshield and

Stackguard protection.

■ Corelan Team: Exploit writing tutorial part 6 : Bypassing Stack

Cookies, SafeSeh, SEHOP, HW DEP and ASLR.

■ Veen (2017): The Dynamics of Innocent Flesh on the Bone: Code

Reuse Ten Years Later. ACM CCS.

INSO – Industrial Software

Institute of Information Systems Engineering | Faculty of Informatics | TU Wien

Thank’s for your attention!

clemens.hlauschek@inso.tuwien.ac.at

https://security.inso.tuwien.ac.at/

clemens.hlauschek@inso.tuwien.ac.at
https://security.inso.tuwien.ac.at/

	Advanced Security for Systems Engineering – VO 05: Advanced Attacks on Applications 3
	Agenda
	Capture-the-Flag Team defragmented.brains
	Stack Smashing and Shell Code writing
	Stack Buffer Overflow: Recapitulation
	Stack Buffer Overflow: Recapitulation
	Stack Buffer Overflow: NOP-Sled
	Shellcode
	Shellcode Writing
	Shellcode Writing: Challenges
	Shellcode Writing: Locating Parameters
	Shellcode Writing: Example Linux/x86

	Stack Smashing Mitigations And Circumvention
	Buffer Overflow: Some Dangerous C Standard Library Functions
	Buffer Overflow: More Dangerous C Library Functions
	Buffer Overflow Countermeasures: Developer and Tester
	Buffer Overflow Countermeasures: Compiler and OS
	Buffer Overflow Countermeasures: Advanced
	Stack Smashing Recap
	Stack Smashing Recap
	Stack Smashing Recap
	Stack Smashing: jmp %ebx Trick
	WX Protection
	WX Circumvention: Return-into-text
	WX Circumvention: Return-into-libc
	Return-into-libc: Function Chaining
	ROP
	Ordinary Programming: Machine Level
	Return Oriented Programming: Machine Level
	Return Oriented Programming: NOP Gadget
	Return Oriented Programming: Immediate Gadget
	Return Oriented Programming
	Return Oriented Programming: Summary
	ASLR
	Defeating ASLR: 3 Strategies
	Beating ASLR: Process not fully randomized
	Beating ASLR: Brute Forcing ASLR
	Beating ASLR: Information Leak
	Stack Overflow Mitigation: Stack Canary
	Fixed Stack Canary vs Random Canary
	Stack Canary: Example Problem 1
	Stack Canary: Local Variable Overwrite
	Stack Canary: Example Problem 2
	Stack Canary: Overwrite pointer
	Stack Canary: Problem Example 3
	Stack Canary: Overwrite Argument
	Recap: Frame Pointer
	Stack Protection: Frame Pointer
	Stack Protection: Shadow Stack
	Stack Protection: Variable Re-ordering
	Bruteforcing Random Stack Canary: Preconditions
	Bruteforcing Random Stack Canary
	Bruteforcing Random Stack Canary
	Bruteforcing Random Stack Canary
	Bruteforcing Random Stack Canary
	Overwrite Exception Handler
	Summary: Defeating Stack Protection

	More Classes of Vulnerabilites
	Heartbleed
	Out-of-bounds Read
	Race Condition: access/open TOCTTOU
	Race Condition: access/open TOCTTOU
	Race Condition: access/open TOCTTOU
	Race Condition: TOCTTOU
	Race Condition: TOCTTOU Mitigation
	Race Condition: CVE-1999-0861
	Race Condition: Smartcards PIN Bruteforce
	Format String Functions
	Format String Vulnerability
	Recap: Stack Layout, Function Parameters
	Format String Vulnerability: Read Stack Content
	Format String Vulnerability
	Integer Overflow
	Integer Overflow: Example Intentional Wrap
	Integer Overflow: Malformed Checks
	Integer Vulnerability
	Integer Vulnerability: Underflow
	Integer Vulnerability: Underflow
	Integer Vulnerability
	Integer Vulnerability: Sign misrepresentation
	Integer Vulnerability: Truncation
	Integer Vulnerabilities: Mitigation
	Integer Vulnerabilities: Summary
	Heap Corruption
	Literature / Links
	Literature / Links
	Literature / Links
	Literature / Links
	Thank's for your attention!

