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Capture-the-Flag Team defragmented.brains
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■ Take part in many international

hacking competitions

■ Diverse bunch, different skills

and skill levels

■ Join our mailinglist:

ctf-join@inso.tuwien.ac.

at

■ Next CTF: HITCON 25.-27.11.

ctf-join@inso.tuwien.ac.at
ctf-join@inso.tuwien.ac.at
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Stack Smashing and Shell Code writing
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Stack Buffer Overflow: Recapitulation
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Basic stack layout, a horizontal perspective
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Stack Buffer Overflow: Recapitulation
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String spills out of buffer, overwrites saved return address.
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Stack Buffer Overflow: NOP-Sled
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New return address needs to point to buffer: Exact location not known.

■ Prepend NOP-Sled to shellcode as “landing zone”

■ Make an educated guess for an address somewhere in the NOP-Sled
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Shellcode
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It is called shellcode even if it does not spawn a shell.

■ Can do any arbitrary computation

■ Useful for an attacker:

■ Bind a shell to a network port

■ Connect back to an attacker

■ Load a post-exploitation framework

■ Start automated malware infection

■ A tiny, space-constrained shellcode can be used to load a more

powerful “second stage”
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Shellcode Writing
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■ Many different

shellcodes

available

■ For successfull

exploitation, it is

often necessary

to be able to

write, debug, and

analyze shellcode

■ Best to write in

assembly
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Shellcode Writing: Challenges
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Special challenges when executing on an indeterminate memory location

■ push operation can overwrite your shellcode

■ contingently adjust %esp register

■ Often, shellcode has to survive strcpy, etc

■ No null chars, alphanumeric, upper case shellcode, etc

During normal program building (and loading), the linker adjusts

addresses

■ String parameters delivered with the payload

■ But shellcode does not know its address
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Shellcode Writing: Locating Parameters
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Trick: How to locate string parameter (e.,g., "/bin/sh")

■ Insert call right before

"/bin/sh"

■ Use jmp to jump to call

■ call pushes %eip on stack

■ After pop, address of

’/bin/sh’ in %eax

1 jmp s h o r t L1

2 L2 :

3 pop %eax

4 . . .

5 . . .

6 L1 :

7 c a l l L2

8 . s t r i n g ’ / b i n / sh ’

9
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Shellcode Writing: Example Linux/x86
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1 jmp 32 // r e l a t i v e jump ( to l i n e 14)

2 pop %e s i // p o i n t e r to ”/ u s r / b i n /vim” now i n %e s i

3 xo r %eax , %eax

4 movb $0x0 , 0 xc(% e s i ) // p r e pa r e arguments f o r s y s e x e c v e

5 mov %e s i , 0xd(% e s i )

6 movl $0x0 , 0x11(% e s i )

7 mov %e s i , %ebx

8 l e a 0 xc(% e s i ) , %ecx

9 l e a 0xd(% e s i ) , %edx

10 movb $0xb , %a l // c a l l to s y s e x e c v e v i a i n t 8 0

11 i n t $0x80

12 movb $0x1 ,% a l // c a l l to s y s e x i t v i a i n t 8 0

13 i n t $0x80

14 c a l l −36 // r e l a t i v e c a l l ( l i n e 2 ) , pushes %e i p

15 ”/ u s r / b i n /vim”
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Stack Smashing Mitigations And Circumvention
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Buffer Overflow: Some Dangerous C Standard Library

Functions
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■ strcpy - copy buffers

■ memcpy, memmove - copy buffers

■ strcat - join 2 strings

■ sprintf, vsprintf - print a string into another string

■ getpw - reconstruct password-line entry

■ gets - read a string from stdin

■ scanf - read and convert a string from stdin

■ fscanf - read and convert a string from a file pointer

■ Pointer arithmetic
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Buffer Overflow: More Dangerous C Library Functions
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■ Safer Alternatives:

strncpy, strncat, snprintf, vsnprintf, fgets

■ Wide Character Strings:

wcscpy, wmemcpy, wcscat, wcsncpy, fgetws

■ Conversion:

wcstombs, mbtowc, asctime_s, ctime_s, c16rtomb, c32rtomb

■ Non-ISO C:

read, bcopy, strlcpy, strlcat,
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Buffer Overflow Countermeasures: Developer and Tester
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■ Correct and secure programming paramount

■ Correct input validation and length-verification

■ Test for buffer overflow vulnerabilities

■ Static code analysis

■ Dynamic methods

■ Fuzz testing

■ Hybrid Methods

■ Code review

■ Avoid dangerous functions (Use variants: strncpy, strncat, . . . )

■ Use type-safe programming languages
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Buffer Overflow Countermeasures: Compiler and OS
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■ Non-executable stacks and heap

■ Data Execution Prevention (DEP)

■ W⊕X: Write XOR Execute

■ Randomized memory layout

■ Address Space Layout Randomization (ASLR)

■ Compiled-in stack protection

■ Stack canary

■ Variable re-ordering
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Buffer Overflow Countermeasures: Advanced
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■ Shadow Stack

■ Pointer Integrity

■ Control-flow Integrity

■ Fine-Grained ALSR

Implement research prototypes as part of your ’Projektpraktikum’ (12

ECTS) and/or Master Thesis.
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Stack Smashing Recap
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1. Return address overwritten

with address pointing inside

buf on stack.

2. During function return (ret

instruction), return address

gets popped into %eip register

3. Instruction pointer (%eip)

points into stack

4. Data on stack is interpreted as

CPU instruction and executed
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Stack Smashing Recap
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■ Non-control flow instructions

increment the instruction

pointer (%eip), so that it

points to the next instruction

■ Data at higher address is

interpreted as instruction and

executed
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Stack Smashing Recap
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■ Non-control flow instructions

increment the instruction

pointer (%eip), so that it

points to the next instruction

■ Data at higher address is

interpreted as instruction and

executed
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Stack Smashing: jmp %ebx Trick

22 / 89

Assume on function return, any

register (e.g., ebx), points to

beginning of buffer

■ Locate opcode for jmp *%ebx

in process’ memory

■ Overwrite return address with

location of this opcode

■ Reliable jump into shellcode without NOP-Sled.

■ Useful if buffer is too small for NOP-Sled
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W⊕X Protection

23 / 89

Write XOR eXecute protection (as part of DEP in Windows)

■ Memory region is either writeable or executable, but not both

■ Prevent any user-injected code from being executed

■ Hardware Support: NX Bit

Circumvention: Return-into-text, Return-into-libc, ROP
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W⊕X Circumvention: Return-into-text
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Redirect control flow to a useful

function in the .text (code-)

section
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W⊕X Circumvention: Return-into-libc
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■ We can return into any function of any library the process is linked

with

■ We can also pass arguments, e.g. "/bin/sh" to system
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Return-into-libc: Function Chaining
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Several function can be chained together.
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Return Oriented Programming (ROP)
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■ ROP takes Return-into-libc to the next level

■ Return-into-libc not always possible:

■ Parameters passed via registers (e.g., x86 64 arch)

■ Library mapping effectively randomized

■ Library address contains 0x00 byte

■ Return into sequence of instructions (“gadgets”) ending with ret

■ xor %eax, %eax ; ret

■ inc %eax ; ret

■ Achieve arbitrary (Turing complete) computation with

gadget-chaining
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Ordinary Programming: Machine Level
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■ Instruction pointer (%eip)

determines instruction to

execute next

■ Automatical increment of %eip

■ Change control flow by

changing value of %eip
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Return Oriented Programming: Machine Level
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■ Sequence of cpu instruction

constitute logical instruction

■ Stack pointer (%esp)

determines next instruction to

execute

■ ret at end of gadgets

increments %esp

■ Control flow change by

manipulating %esp
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Return Oriented Programming: NOP Gadget
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ret

■ A pointer to

the opcode

C3 (ret)
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Return Oriented Programming: Immediate Gadget
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■ A pointer to

the code

sequence

pop %ebx ; ret

■ pop %ebx

will load the

next dword

into %ebx

■ %esp is incremented by both the pop and the ret instruction
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Return Oriented Programming
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■ Search for gadgets: upwards in code, starting from return instructions

(Opcode C3 on x86)

■ Collect gadgets in TRIE data structure

■ Automate ROP with compiler to produce Return Oriented Programs

■ Python Tool to facilitate ROP exploitation: ROPgadget
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Return Oriented Programming: Summary
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■ Turing complete

■ Induce arbitrary behavior without injecting code.

■ Defeat W⊕X, Code signing, Trusted Computing and Code

Attestation, ...

■ ROP vs return-into-libc: - ROP also works with different calling

conventions (e.g., amd64: function arguments in registers)

■ Works on different architectures: SPARC, ARM, ...

■ However: base address of text, lib must be known.
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ASLR
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Idea: Defend against ROP, return-into-libc attacks

With each execution, randomize the

■ load address of libraries and

■ code-segment (text),

■ the start address of the stack

■ data segement, and

■ the heap.
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Defeating ASLR: 3 Strategies
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■ Process not fully randomized

■ Determine address of library call by Brute Force

■ Exploit an Information Leak



AdvSecSysEng WS22 | Advanced Attacks on Applications

Beating ASLR: Process not fully randomized
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■ Executable must be compiled as

Position Independent Executable (PIE)

■ Non-PIE binaries are protected only against trivial return-into-libc

attacks

■ Otherwise: return-to-text, ROP

■ PIE: Performance overhead 5-10% on x86 (32 Bit)

■ Any library at fixed address open possibility for ROP attacks.

■ Example: Linux Virtual Dynamic linked Shared Object (VDSO)

(Interface to kernel space) was not randomized for a long time.
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Beating ASLR: Brute Forcing ASLR
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■ Entropy on x86 too low to be effective: 10-16 Bit for library load

address

■ Bruteforce normally possible on x86 over network.

■ Of course, process must still be alive after crash, or respawn.

■ Processes that fork and afterwards call execve also exploitable: just

one more Bit of entropy.
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Beating ASLR: Information Leak
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Use vulnerability to reveal memory content.

Examples:

■ Windows: Modify BSTR length.

■ Windows: Modify Array object length.

Overwrite length field of those objects to reveal memory content.

More Examples:

■ Format String Vulnerability

■ Out-of-Bound Read
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Stack Overflow Mitigation: Stack Canary
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■ During function prologue, a random canary value is placed after

return address.

■ Before function returns, canary value is checked and overflow

detected.
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Fixed Stack Canary vs Random Canary
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■ Fixed: 0x000a0dff

■ Stops most string operations

■ Does little to prevent memcpy and direct pointer arithmetic

corruptions

■ Randomized

■ Different for each process execution

■ Randomized XOR

■ Randomized and XOR control flow data
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Stack Canary: Example Problem 1
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What is the problem here?

1 i n t a u t h e n t i c a t e ( char ∗ username , char ∗ password ) {

2 i n t auth = 0 ;

3 char b u f f e r [ 6 4 ] ;

4

5 i f ( auth = v e r i f y ( username , password ) )

6 s p r i n t f ( b u f f e r , ” succ auth : %s ” , username ) ;

7 e l s e

8 s p r i n t f ( b u f f e r , ” auth f a i l : %s ” , username ) ;

9

10 . . .

11

12 r e t u r n auth ;

13 }
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Stack Canary: Local Variable Overwrite
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■ Return address need not be overwritten for successful attack

■ Thus, canary value is never corrupted

■ Attack succeeds without detection
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Stack Canary: Example Problem 2
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What is the problem with this code?

1 i n t f ( cha r ∗∗ argv ) {

2

3 char ∗ p t r ;

4 char b u f f e r [ 6 4 ] ;

5

6 p t r = b u f f e r ;

7 memcpy ( pt r , a rgv [ 1 ] , 128) ;

8

9 . . .

10

11 s t r n c p y ( pt r , a rgv [ 2 ] , 16) ;

12

13 . . .

14 }
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Stack Canary: Overwrite pointer
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■ Attacker can overwrite ptr with the memcpy call

■ With the strncpy call, attacker can write to any memory location,

without touching the canary
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Stack Canary: Problem Example 3
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1 i n t g ( char ∗ s t r ) {

2

3 char b u f f e r [ 6 4 ] ;

4 char ∗ p t r ;

5 i n t i ;

6

7 s t r c p y ( b u f f e r , s t r ) ;

8 p t r=b u f f e r [ 0 ] ;

9

10 f o r ( i =0; i <64; i++) {

11 ∗( p t r++)=touppe r (∗ p t r ) ;

12 }

13 s t r c p y ( s t r , b u f f e r ) ;

14

15 . . .

16 i f ( . . ) e x i t (1 ) ;

17 }
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Stack Canary: Overwrite Argument
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Attacker can overwrite the argument str with the first strcpy.

With the second strcpy, attacker can overwrite any address in memory.

Patching the exit call by overwriting the entry in the

Global Offset Table (GOT) (Windows: Import Address Table (IAT))

allows gaining control of execution before the canary is checked.
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Recap: Frame Pointer
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Frame pointer of previous caller is stored just after return address.
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Stack Protection: Frame Pointer
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Frame pointer is used to access local variables and arguments.

■ %ebp+8 to address first argument

■ %ebp-offset to address local variable

Overwriting the frame pointer (%ebp) thus “places” arguments and local

variables to other memory region.

Thus, saved frame pointer needs protection too.
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Stack Protection: Shadow Stack
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Proposed Solution: Shadow Stack

■ During function prologue, return address is saved on a “shadow

stack”

■ During function epilogue, return address is restored from shadow

stack.

Can be trivially extended to protect the saved frame pointer.
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Stack Protection: Variable Re-ordering
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Stack protection evolved to mitigate against these attacks.

■ Buffers are placed after pointers

■ Arguments are copied after local variables

However, stack buffer overruns remain still exploitable sometimes.

■ Complexity; No simple solution
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Bruteforcing Random Stack Canary: Preconditions
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If

■ a program forks (e.g., a network daemon to handle requests),

memory space is copied, and

■ the child process does not call execve, the randomized stack canary

stays the same, and

■ the attacker can determine whether his exploit crashed the child (via

log-message, timing channel, etc.),

then the stack canary value can be easily determined.
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Bruteforcing Random Stack Canary
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The buffer is overflowed until the first byte of the canary is corrupted.

The attacker iterates over this last byte from 0− 255 by sending new

exploits.
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Bruteforcing Random Stack Canary
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If the child process did not crash, he guessed the first byte correct.
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Bruteforcing Random Stack Canary
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The attacker continues to probe the second byte.
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Bruteforcing Random Stack Canary
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He eventually finds the second byte, and continues to probe the next

byte, etc.

A 32 Bit canary can thus be found with max 4 · 256 tries (4 · 128

expected value).
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Overwrite Exception Handler
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Windows stores pointers to exception handlers on the stack.

■ Overwrite exception handler with new pointer

■ If Exception is thrown before the function returns, attacker takes over

program control before stack canary is checked.

■ In many cases, the attacker is able to provoke an exception.

Mitigation: SafeSEH: All valid exceptions are registered in a function

table.
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Summary: Defeating Stack Protection
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■ Brute force canary

→ Works if process forks and child does not call execve

■ Indirect write to arbitrary memory locations: RET, GOT / IAT, dtor,

vtable

→ RELRO and BIND NOW protects some of these locations in Linux

■ Overwrite exception handler

→ Easy if SafeSEH is not activated in Windows.

■ For performance reason, usually not all functions are protected

against stack overflows

-fstack-protector-all vs. -fstack-protector vs.

-fstack-protector-strong in gcc
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More Classes of Vulnerabilites
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Heartbleed
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Out-of-bounds Read
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■ Read beyond the memory of an allocated buffer

■ Cause: Lack of correct bounds checking

■ Information disclosure vulnerability, but can be disastrous

Heartbleed Bug (disclosed April 2014)

■ Programming error in openssl library

■ Length field in heartbeat packet attacker controlled

■ No comparision with actual received record size

■ Read up to 64Kb memory adjacent to s->s3->rrec.data

■ Extract private keys, passwords, etc. from memory

■ Heartbleed affected an estimated 24-55% of HTTPS server
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Race Condition: access/open TOCTTOU
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Victim (installed setuid-root)

1 i f ( a c c e s s ( ” f i l e ” , W OK) != 0)

2 {

3 e x i t ( 1 ) ;

4 }

5

6

7

8 f d = open ( ” f i l e ” , O WRONLY) ;

9

10

11

12 w r i t e ( fd , b u f f e r ,

13 s i z e o f ( b u f f e r ) ) ;

Unix access syscall

■ Solved Confused Deputy

problem

■ Introduced Time Of Check

To Time Of Use races
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Race Condition: access/open TOCTTOU
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Victim (installed setuid-root)

1 i f ( a c c e s s ( ” f i l e ” , W OK) != 0)

2 {

3 e x i t ( 1 ) ;

4 }

5

6

7

8 f d = open ( ” f i l e ” , O WRONLY) ;

9

10 // A c t u a l l y w r i t i n g ove r

11 // / e t c /shadow

12 w r i t e ( fd , b u f f e r ,

13 s i z e o f ( b u f f e r ) ) ;

Attacker

1

2

3 . . .

4 // A f t e r the a c c e s s check

5 s ym l i nk ( ”/ e t c /shadow” , ” f i l e ” ) ;

6 // Be fo r e the open , ” f i l e ”

7 // p o i n t s to / e t c /shadow

8 . . .
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Race Condition: access/open TOCTTOU
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Victim (installed setuid-root)

1 i f ( a c c e s s ( ” f i l e ” , W OK) != 0)

2 {

3 e x i t ( 1 ) ;

4 }

5

6

7

8 f d = open ( ” f i l e ” , O WRONLY) ;

9

10 // A c t u a l l y w r i t i n g ove r

11 // / e t c /shadow

12 w r i t e ( fd , b u f f e r ,

13 s i z e o f ( b u f f e r ) ) ;

Attack (general outline)

1 // Let the v i c t im run

2 i f ( f o r k ( ) == 0)

3 system ( ” v i c t im ” ) ;

4 u s l e e p ( 1 ) ; // Y i e l d CPU

5 // sw i t c h t a r g e t

6 u n l i n k ( ” f i l e ” )

7 s ym l i nk ( ”/ e t c /shadow” , ” f i l e ” ) ;
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Race Condition: TOCTTOU
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Time Of Check Time Of Use races

■ Concurrent processes: setuid program, privileged server

■ Access to shared resources: filesystem, sockets, database

■ Often difficult to spot and reproduce

Exploiting TOCTTOU races: scheduler needs to switch at the right

instruction to attacker’s process

■ Bruteforce

■ Filesystem maze

■ Algorithmic complexity attacks
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Race Condition: TOCTTOU Mitigation
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Countermeasures examples:

■ Kernel run-time detection and prevention (state management

problem)

■ Security test: data and control flow analysis tools

■ Transactional file system

■ Use not-portable, secure functions

■ fork/setuid/open + IPC

■ Atomic operations, concurrency control
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Race Condition: CVE-1999-0861
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Race condition in SSL / MS Internet Information Services (IIS)

■ Sending an encrypted message

■ Correct sequence

1. load plain text into buffer

2. encrypt buffer

3. send data from buffer

■ Error at high load

1. load plain text into buffer

2. send data from buffer

3. encrypt buffer
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Race Condition: Smartcards PIN Bruteforce
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Smartcards need to protect against

PIN bruteforcing:

1. Counter initialized to 3

2. If wrong PIN, then decrement

counter

3. If counter 0, lock card

4. If PIN correct, reset counter

Secure?

Brute force attack, racing:

1. Enter PIN

2. Check if PIN is correct (e.g.,

using a side channel)

3. Before counter on card is de-

creased, pull power plug

Countermeasure:

■ Decrease counter before checking PIN
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Format String Functions
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printf("error in line %i: %s", linenr, errorstring);

■ Use format control strings to generate output strings

■ Functions: printf family (fprintf, sprintf, ...)

■ Different format control characters, see man sprintf

■ integer: %d, %i, %o, %u, %x

■ float: %e, %f, %g, %a

■ character: %c

■ string: %s
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Format String Vulnerability

69 / 89

■ User data is directly passed

to printf

■ Attacker can provide format

string

■ Correct implementation is

printf("%s", argv[1]);

1 #i n c l u d e <s t d i o . h>

2 #i n c l u d e < s t r i n g . h>

3

4 i n t

5 main ( i n t argc , cha r ∗ argv [ ] )

6 {

7 p r i n t f ( a rgv [ 1 ] ) ;

8 }

■ Easy to test for and to find automatically in many cases

(compile-time checking)

■ Dynamic format string generation, cross-application format string

dangerous
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Recap: Stack Layout, Function Parameters
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1 vo i d g ray ( )

2 {

3 . . .

4 y e l l ow ( a1 , a2 ) ;

5 . . .

6 }

7

8 i n t y e l l ow ( i n t p1 , i n t p2 )

9 {

10 char buf [ 3 ] ;

11 i n t l1 , l 2 ;

12 . . .

13 l2 = printf(”int: %i, str: %s”, l1, buf);

14 r e t u r n l 2 ;

15 }
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Format String Vulnerability: Read Stack Content
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■ Format function

assumes all

parameters are

correctly pushed to

the stack

■ Attacker can read

the whole stack

content

$ . / format AAAA.%x.%x.%x

AAAA.8049 f f 4 . b f f f f 8 b 8 .8048459

$ . / format ”AAAA.%3$x”

AAAA.8048459

$ . / format ‘ p e r l −e ’ p r i n t ”%08x . ” x1000 ’ ‘

. . . 4 1 007461 . 4 1414141 . 25414141 . 2 e783830 . . .

Parameter %n allows write: Control flow hijacking possible
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Format String Vulnerability
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■ Read (arbitrary) memory locations

■ Confidential informations in memory

■ Confidential keys, passwords, . . .

■ Write to any memory location

■ Overwrite addresses (return address, . . . )

■ Control flow hijacking

■ Arbitrary code execution
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■ n-bit (register!) arithmetic 6=

(∞-bit) arithmetic

■ Many languages: C, C++,

Java, C#, Go

■ Sometimes intentional

■ Sometimes very difficult to

catch



AdvSecSysEng WS22 | Advanced Attacks on Applications

Integer Overflow: Example Intentional Wrap

74 / 89

Linear Congruential PRNG

1 #de f i n e IA 1103515245u

2 #de f i n e IC 12345u

3 #de f i n e IM 2147483648u

4

5 s t a t i c uns i gned i n t c r and = 0 ;

6

7 /∗ Cr e a t e s a random i n t e g e r [ 0 . . . imax ] ( i n c l u s i v e ) ∗/

8 i n t my i rand ( i n t imax ) {

9 i n t i v a l ;

10 /∗ c r and = ( c r and ∗ IA + IC ) % IM ; ∗/

11 c r and = c rand ∗ IA + IC ; // Use o v e r f l ow to wrap

12 i v a l = c rand & ( IM − 1) ; /∗ Modulus ∗/

13 i v a l = ( i n t ) ( ( f l o a t ) i v a l ∗ ( f l o a t ) ( imax + 0 .999 )

14 / ( f l o a t ) IM ) ;

15 r e t u r n i v a l ;

16 }
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1 s t r u c t DS {

2 . . .

3 i n t num ;

4 i n t v a l u e s [ ] ;

5 }

6 . . .

7 // t h i s check i s malformed

8 i f (num > INT MAX / s i z e o f ( i n t )

9 − s i z e o f (DS) )

10 goto f a i l ;

11 // heap o v e r f l ow p o s s i b l e

12 . . . = ma l l o c ( s i z e o f (DS) +

13 num ∗ s i z e o f ( i n t ) ) ;

■ Magic values hard to maintain:

datastructure might change!

■ Often: Incorrect check

■ Check to avoid overflow of

form a+ x ∗ b > MAX:

x > (MAX − a)/b
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Netscape vulnerability

1 vo i d getComm( uns i gned i n t l en , cha r ∗ s r c )

2 {

3 uns i gned i n t s i z e ;

4

5 s i z e = l e n − 2 ;

6

7 char ∗comm = ( char ∗) ma l l o c ( s i z e + 1 ) ;

8 memcpy(comm, s r c , s i z e ) ;

9 r e t u r n ;

10 }

What can go wrong

here?



AdvSecSysEng WS22 | Advanced Attacks on Applications

Integer Vulnerability: Underflow

77 / 89

Netscape vulnerability

1 vo i d getComm( uns i gned i n t l en , cha r ∗ s r c )

2 {

3 uns i gned i n t s i z e ;

4

5 s i z e = l e n − 2 ;

6

7 char ∗comm = ( char ∗) ma l l o c ( s i z e + 1 ) ;

8 memcpy(comm, s r c , s i z e ) ;

9 r e t u r n ;

10 }

■ (len− 2) can

underflow:

1− 2 = 232 − 1

■ ... so that (size+1)

can overflow:

(232 − 1) + 1 = 0
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Netscape vulnerability

1 vo i d getComm( uns i gned i n t l en , cha r ∗ s r c )

2 {

3 uns i gned i n t s i z e ;

4

5 s i z e = l e n − 2 ;

6

7 char ∗comm = ( char ∗) ma l l o c ( s i z e + 1 ) ;

8 memcpy(comm, s r c , s i z e ) ;

9 r e t u r n ;

10 }

■ (len− 2) can

underflow:

1− 2 = 232 − 1

■ ... so that (size+1)

can overflow:

(232 − 1) + 1 = 0

■ and an attacker may

corrupt the heap
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1 s t r u c t d c on p l a t f o rm da t a { . . .

2 u8 (∗ r e a d s t a t u s ) ( vo i d ) ;

3 } ;

4 /∗ −>r e a d s t a t u s ( ) imp l ementa t i on ∗/

5 s t a t i c u8 d c o n r e a d s t a t u s x o 1 5 ( vo i d )

6 {

7 i f ( ! d c on wa s i r q ( ) )

8 r e t u r n −1;

9 . . .

10 }

11 s t a t i c

12 s t r u c t d c on p l a t f o rm da t a ∗ pdata = . . . ;

13 i r q r e t u r n t d c o n i n t e r r u p t ( . . . )

14 {

15 i n t s t a t u s = pdata−>r e a d s t a t u s ( ) ;

16 i f ( s t a t u s == −1)

17 r e t u r n IRQ NONE ;

18 . . . }

Linux Kernel bug in

OLPC display driver:

What is happening here?
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1 s t r u c t d c on p l a t f o rm da t a { . . .

2 u8 (∗ r e a d s t a t u s ) ( vo i d ) ;

3 } ;

4 /∗ −>r e a d s t a t u s ( ) imp l ementa t i on ∗/

5 s t a t i c u8 d c o n r e a d s t a t u s x o 1 5 ( vo i d )

6 {

7 i f ( ! d c on wa s i r q ( ) )

8 r e t u r n −1;

9 . . .

10 }

11 s t a t i c

12 s t r u c t d c on p l a t f o rm da t a ∗ pdata = . . . ;

13 i r q r e t u r n t d c o n i n t e r r u p t ( . . . )

14 {

15 i n t s t a t u s = pdata−>r e a d s t a t u s ( ) ;

16 i f ( s t a t u s == −1)

17 r e t u r n IRQ NONE ;

18 . . . }

■ status can never

get negative.

■ read_status

returns −1 = 0xff

■ 0xff gets

zero-extended:

0x000000ff

■ Error handling fails
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1 i n t

2 d e t e c t a t t a c k ( u cha r ∗buf , i n t l en ,

3 u cha r ∗ IV )

4 {

5 s t a t i c word16 ∗h = . . . ;

6 s t a t i c word16 n = . . . ;

7 word32 l ;

8 . . .

9 i f ( h == NULL) {

10 debug ( ” I n s t a l l c r c a t t a c k ”\

11 ” d e t e c t o r . ” ) ;

12 n = l ;

13 h = ( word16 ∗) xma l l o c ( n ∗

14 s i z e o f ( word16 ) ) ;

15 }

16 . . .

17 }

■ Example:

CVE-2001-0144,

SSH

■ n and l different

types

■ Assignment n = l

could cause a

truncation

■ Results in

exploitable heap

corruption
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■ Correct checks

■ Automated testing tools: e.g., KINT

■ Use type-safe types

■ SafeInt library (C++)

■ BigInteger (Java)

■ Java SE8: Integer Arithmetic Overflow/Underflow Detection API

■ Math.addExact, Math.incrementExact, ...

■ throws ArithmeticException
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Classes of bugs:

■ Integer Overflow

■ Integer Underflow

■ Signedness Error

■ Truncation

Exploit

■ Denial of Service: Bypass error checking, etc

■ Logical Flaw: Bypass Authentication Routine, etc

■ Memory Corruption: Often incorrect heap allocation
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■ Heap Overflow

■ Use After Free

■ Double Free

■ Integer error

■ Signal Race
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■ Marth (2018): Memory Corruption Tutorial.

https://www.proggen.org/doku.php?id=security:memory-

corruption:start

■ Saito (2016): A Survey of Prevention/Mitigation against Memory

Corruption Attacks.

■ Borisov (2005): Fixing Races for Fun and Profit: How to abuse

atime, Usenix Security.

■ Cai (2009): Exploiting Unix File-System Races via Complexity

Attacks, Oakland.

■ Scut (2001): Exploiting Format String Vulnerabilities.

■ Google Project Zero: http://googleprojectzero.blogspot.co.at/
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■ Brumley (2007): RICH: Automatically Protecting Against

Integer-Based Vulnerabilities. NDSS.

■ Dietz (2012): Understanding Integer Overflow in C/C++. ICSE.

■ Wang (2012): Improving Integer Security for Systems with KINT.

OSDI.

■ Corelan Team: Exploit writing tutorial part 6 : Bypassing Stack

Cookies, SafeSeh, SEHOP, HW DEP and ASLR.

■ Meer (2010): Memory Corruption Attacks. The Almost Complete

History. BlackHat.
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■ Solar Designer (1997): Getting around non-exectuable stack.

BuqTraq.

■ Nergal (2001): Advanced return-into-lib(c) exploits. Phrack 58-4.

■ Shacham (2012): Return-Oriented Programing: Systems, Languages,

and Applications

■ Shacham (2004): On the effectiveness of Address-Space

Randomization.
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■ Bulba and Kil3r (2000): Bypassing Stackguard and Stackshield,

Phrack 56.

■ Richarte (2002): Four different tricks to bypass Stackshield and

Stackguard protection.

■ Corelan Team: Exploit writing tutorial part 6 : Bypassing Stack

Cookies, SafeSeh, SEHOP, HW DEP and ASLR.

■ Veen (2017): The Dynamics of Innocent Flesh on the Bone: Code

Reuse Ten Years Later. ACM CCS.
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