
INSO – Industrial Software
Institute of Information Systems Engineering | Faculty of Informatics | TU Wien

Advanced Security for Systems Engineering – Lecture 02:
Secure Architectures

Florian Fankhauser, Martin Moutran, Christian Schanes, Christian Brem

AdvSecSysEng 22W | Secure Architectures

Agenda

2 / 39

Introduction/Definition

Secure Architectures

Designing Secure Systems

Secure Design Principles

Trade-off between IT Security Goals

References

AdvSecSysEng 22W | Secure Architectures

Introduction

3 / 39

■ Software/system architecture: mapping of the problem to software

and hardware components

■ Main components with connections of them

■ Basic, abstract, high level design

■ Security architecture

■ Definition of the basic security components

■ Security principles for building the system

AdvSecSysEng 22W | Secure ArchitecturesAdvSecSysEng 22W | Secure Architectures

Secure Architecture?

4 / 39

(See CERT Secure Coding Standards)

AdvSecSysEng 22W | Secure ArchitecturesAdvSecSysEng 22W | Secure Architectures

Another Secure Architecture?

5 / 39

(See Bodiam Castle, Chuck Andolino, CC BY-SA 2.0)

AdvSecSysEng 22W | Secure ArchitecturesAdvSecSysEng 22W | Secure Architectures

Complexity in Real-World IT

6 / 39

(See Curphey M, Arawo R. Web application security assessment tools)

AdvSecSysEng 22W | Secure Architectures

Basis for Designing Secure Systems

7 / 39

■ Defining the appropriate security requirements

■ in a suited threat model and

■ ensuring well-implemented security-mechanisms.

■ Project as a whole needs to be considered

■ Software

■ Network

■ Hardware

■ Physical Security

AdvSecSysEng 22W | Secure Architectures

Broad Goals for a Security Architecture

8 / 39

■ Detect attacks

■ Resist attacks

■ React to attacks

■ Recover from attacks

(See Bass, Clements and Kazman, 2012)

AdvSecSysEng 22W | Secure Architectures

Influences for a Secure Architecture

9 / 39

AdvSecSysEng 22W | Secure Architectures

Examples of Influences for a Secure Architecture

10 / 39

AdvSecSysEng 22W | Secure Architectures

Some Details of Influences

11 / 39

■ Which security properties shall the system (or specific parts of the

system) guarantee? E.g., confidentiality/anonymity,...

■ Multiple requirements from different sources/stakeholders

■ Are specific standards/regulations necessary?

■ Is a certification necessary? Which one? (e.g., Common Criteria,

PCI)

■ Which requirements conflict? What to do about it?

■ What to do if requirements change? Is there a process to recognize

that?

■ → IT Security in Large IT Infrastructures SS2023

AdvSecSysEng 22W | Secure Architectures

Principles for Secure Architectures

12 / 39

■ Security requirements analysis

■ Protection requirements analysis

■ Create barricades around to be protected artifacts using different

mechanisms

■ The more important a resource is, the more security measures

■ Security architecture

AdvSecSysEng 22W | Secure Architectures

Threat Model

13 / 39

■ What are the assumed capabilities of the attacker? E.g.,

■ Active vs. passive attacker

■ Physical access vs. remote access only

■ Which components of the system are

■ trusted,

■ partly trusted (e.g., distributed trust, honest-but-curious),

■ untrusted?

AdvSecSysEng 22W | Secure Architectures

Hardware Security Architecture

14 / 39

■ Devices

■ PCB design and layout

■ Secure CPU, MCU:

- RAM encryption

- Tamper detection

- Secure keystore

- Secure boot

- ...

■ Data center

■ HSM (Hardware Security Modules)

■ KMS (Key Management System)

AdvSecSysEng 22W | Secure Architectures

Secure Design Principles

15 / 39

■ Least Privilege

■ Separation of Duties

■ Fail Secure

■ Economy of Mechanisms

■ Complete Mediation

■ Least Common Mechanisms

■ Psychological Acceptability

■ Leveraging Existing Components

(See Jerome H. Saltzer und Michael D. Schroeder, 1975)

AdvSecSysEng 22W | Secure Architectures

Least Privilege – Design Techniques

16 / 39

■ Modular Architecture:

■ Split entire system into smaller subunits

■ Each subunit is discrete with unitary functionality (cohesive)

■ Each subunit is designed to perform a set of logical operations

■ Each subunit is rather independent to others (coupling)

■ Use virtualization

■ Divide system into different network zones with defined interfaces

between the zones, e.g., DMZ

■ Best practice suggests: Designed software modules are highly

cohesive and loosely coupled

AdvSecSysEng 22W | Secure Architectures

Separation of Duties – Design Techniques

17 / 39

■ When designed and implemented correctly, damage by a person or

resource is reduced

■ Separation of duties should be found in application features

(i.e., role-based access control) and software development life-cycle

(i.e., deny access for developers on production systems)

■ Example when dealing with cryptographic keys:

■ Splitting of cryptographic keys, e.g., key ceremony for exchange

of cryptographic keys

■ Best practice suggests to implement separation of duties with

auditing

AdvSecSysEng 22W | Secure Architectures

Fail Secure – Design Techniques

18 / 39

■ Define secure state to get into after errors

■ Do not allow exceptions to go unhandled

■ Do not allow any exceptions to reach the GUI

■ Check, if error handlers are called frequently

(i.e. there might be a security vulnerability)

AdvSecSysEng 22W | Secure Architectures

Economy of Mechanisms – Design Techniques

19 / 39

■ Avoid unnecessary functionality and unnecessary security

mechanisms

■ Strive for simplicity

■ Keep security mechanisms simple

■ Implementation should not be partial → otherwise security

issues

■ Model the data in a simple way (results in simpler validation

routines)

■ Strive for operational ease of use (e.g., SSO)

AdvSecSysEng 22W | Secure Architectures

Complete Mediation – Design Techniques

20 / 39

■ Identify code paths that access privileged and sensitive resources and

secure them

■ Avoid duplicate code for input validation

■ Be aware of social engineering attacks and security unaware users

■ Keep in mind users that don’t know how to use the software

AdvSecSysEng 22W | Secure Architectures

Least Common Mechanisms – Design Techniques

21 / 39

■ Design should isolate code (functions) by user roles → limits

exposure of sensitive data

■ Example:

■ Instead of sharing a function between superusers and

nonsuperusers consisting of different code paths for each party,

implement two separate functions to serve the different roles

AdvSecSysEng 22W | Secure Architectures

Psychological Acceptability – Design Techniques

22 / 39

■ Applications and especially security protection mechanisms should

■ be easy to use

■ not affect accessibility

■ be transparent to the user

■ Users should not be burdened by security mechanisms

■ Example:

■ Password policy that requires min. 16 characters for passwords

may enforce users to write down their passwords and decrease

overall security

AdvSecSysEng 22W | Secure Architectures

Leveraging Existing Components – Design Techniques

23 / 39

■ Promotes the reusability of existing components

■ Tier architecture is advisable

■ Software functionality can be separated into presentation,

business and data access tiers

■ Different presentation layers can be implemented

■ Reuse tested and well known concepts and patterns for the

architecture

■ Reuse components if you know them! However, be careful about the

security of existing components you don’t know

AdvSecSysEng 22W | Secure Architectures

Open Design – Design Techniques

24 / 39

■ Avoid security by obscurity

■ No hard coding of sensitive information in source code or

binaries (e.g., cryptographic keys, passwords, connection

strings)

■ Use hidden form fields in web application carefully, i.e., modified

client

■ Hidden URLs for secret documents without authentication, i.e.,

google hacking

■ Use open and proven crypto systems

AdvSecSysEng 22W | Secure Architectures

Defense in Depth – Overview

25 / 39

■ Defense in Depth (layered defense) results from layering

■ Security controls = countermeasure to avoid / minimize security

risk and

■ Risk mitigation safeguards into software design

■ Should give an organization time to detect and respond to an attack

■ Goal is that software doesn’t get totally compromised, because of

single security breach

■ Example: it’s not good to rely on a firewall only for an

internal-use-only application

■ More important assets should have more security layers

■ Can be reactive (e.g., detect malicious activities and block them) or

preventive (e.g., awareness training, security patches)

AdvSecSysEng 22W | Secure Architectures

Defense in Depth – Shortcomings

26 / 39

■ Can add complexity to the software system

■ Contradicts to the principle of simple design

■ Therefore, might introduce new risks

AdvSecSysEng 22W | Secure Architectures

Trade-off between IT Security Goals

27 / 39

■ IT Security Goals

■ Confidentiality

■ Integrity

■ Availability

■ Authenticity

■ Security Goals may conflict with each other, when designing software

architecture, e.g.,

AdvSecSysEng 22W | Secure Architectures

Trade-off between IT Security Goals

27 / 39

■ IT Security Goals

■ Confidentiality

■ Integrity

■ Availability

■ Authenticity

■ Security Goals may conflict with each other, when designing software

architecture, e.g.,

■ Confidentiality vs. availability

(e.g., Encrypted data not recoverable, if key lost)

■ Availability vs. authenticity

(e.g., Slow hashing algorithms within authentication process)

AdvSecSysEng 22W | Secure Architectures

Even More Software Architecture Aspects: Cryptography

28 / 39

■ Cryptography

■ Where?

■ When?

■ Recovery of encrypted data when private key is lost?

■ Availability/processing speed

■ → A Catalog of Security Architecture Weaknesses (Santos, Tarrit

and Mirakhorli)

AdvSecSysEng 22W | Secure Architectures

Network Security Architecture

29 / 39

■ Connection of external sites/remote work

■ Firewalls, VPN, Honeypots, DMZ, TLS, . . .

■ Adversarial Model in a Networking Setting

■ Protection against tampering: integrity protection

■ Protection against Replay and Re-order attacks: protocol must

use, e.g., a message counter in the authenticated data, or an

authenticated nonce value with the message that must be

different for each new message

■ Protocol Downgrade Attack

- TLS versions supported by server

- HSTS

AdvSecSysEng 22W | Secure Architectures

Example of Failed Security Architecture

30 / 39

(See The Washington Post)

AdvSecSysEng 22W | Secure Architectures

Example of Large Security Architecture

31 / 39

(See Gesamtarchitektur Release Version 1.5.0, gematik)

AdvSecSysEng 22W | Secure Architectures

Outlook: Guest Lecture about Zero Trust Architectures

32 / 39

■ Guest lecture on November 25 finalized

■ CSO of gematik

■ Implementation of Zero Trust in Complex IT Infrastructures (Current

Status of Implementation within the German Health Telematics

Infrastructure)

AdvSecSysEng 22W | Secure Architectures

References and Bibliography 1/5

33 / 39

■ Jerome H. Saltzer and Michael D. Schroeder. The protection of

information in computer systems. In Proceedings of the IEEE,

volume 63, pages 1278–1308, 1975

■ Matt Bishop. Computer Security: Art and Science. Pearson

Education, Inc, 2003. ISBN 0-201-44099-7

■ Ross Anderson. Security Engineering. A Guide to Building

Dependable Distributed Systems. Wiley Publishing, Inc., 2 edition,

2008. ISBN 978-0-470-06852-6. https://www.cl.cam.ac.uk/

~rja14/book.html

■ Open Security Architecture

https://www.cl.cam.ac.uk/~rja14/book.html
https://www.cl.cam.ac.uk/~rja14/book.html
http://www.opensecurityarchitecture.org/

AdvSecSysEng 22W | Secure Architectures

References and Bibliography 2/5

34 / 39

■ Joshua J. Pauli and Dianxiang Xu. Misuse case-based design and

analysis of secure software architecture. In International Conference

on Information Technology: Coding and Computing (ITCC’05) -

Volume II, volume 2, pages 398–403 Vol. 2, April 2005a. doi:

10.1109/ITCC.2005.199

■ Mark Curphey and Rudolph Arawo. Web application security

assessment tools. Security & Privacy, IEEE, 4(4):32–41, 2006. ISSN

1540-7993. doi: 10.1109/MSP.2006.108

■ Len Bass, Paul Clements, and Rick Kazman. Software Architecture

in Practice. Addison-Wesley Professional, 3rd edition, 2012. ISBN

0321815734, 9780321815736

AdvSecSysEng 22W | Secure Architectures

References and Bibliography 3/5

35 / 39

■ Joshua J. Pauli and Dianxiang Xu. Misuse case-based design and

analysis of secure software architecture. In International Conference

on Information Technology: Coding and Computing (ITCC’05) -

Volume II, volume 2, pages 398–403 Vol. 2, April 2005b. doi:

10.1109/ITCC.2005.199

■ Koen Yskout, Riccardo Scandariato, Bart De Win, and Wouter

Joosen. Transforming security requirements into architecture. In

2008 Third International Conference on Availability, Reliability and

Security, pages 1421–1428, March 2008. doi: 10.1109/ARES.2008.47

AdvSecSysEng 22W | Secure Architectures

References and Bibliography 4/5

36 / 39

■ Eduardo B. Fernandez, Mihai Fonoage, VanHilst Michael, and Mirela

Marta. The secure three-tier architecture pattern. In 2008

International Conference on Complex, Intelligent and Software

Intensive Systems, pages 555–560, March 2008. doi:

10.1109/CISIS.2008.51

■ Joanna C. S. Santos, Katy Tarrit, and Mehdi Mirakhorli. A catalog

of security architecture weaknesses. In 2017 IEEE International

Conference on Software Architecture Workshops (ICSAW), pages

220–223, April 2017. doi: 10.1109/ICSAW.2017.25

■ Gunnar Peterson. Don’t trust. and verify: A security architecture

stack for the cloud. IEEE Security Privacy, 8(5):83–86, September

2010. ISSN 1540-7993. doi: 10.1109/MSP.2010.149

AdvSecSysEng 22W | Secure Architectures

References and Bibliography 5/5

37 / 39

■ Gilberto Pedraza-Garcia, Hernan Astudillo, and Dario Correal. A

methodological approach to apply security tactics in software

architecture design. In 2014 IEEE Colombian Conference on

Communications and Computing (COLCOM), pages 1–8, June 2014.

doi: 10.1109/ColComCon.2014.6860432

AdvSecSysEng 22W | Secure Architectures

Summary

38 / 39

■ Solid architecture is the basis of secure systems

■ IT security goals may conflict with another

■ Due to business needs decide what design principles to use

■ Balancing of different design principles is recommended

■ “Complexity is the worst enemy of security” (Schneier)

INSO – Industrial Software

Institute of Information Systems Engineering | Faculty of Informatics | TU Wien

Thank you!

https://establishing-security.at/

https://establishing-security.at/

	Advanced Security for Systems Engineering – Lecture 02: Secure Architectures
	Agenda
	Introduction
	Secure Architecture?
	Another Secure Architecture?
	Complexity in Real-World IT
	Basis for Designing Secure Systems
	Broad Goals for a Security Architecture
	Influences for a Secure Architecture
	Examples of Influences for a Secure Architecture
	Some Details of Influences
	Principles for Secure Architectures
	Threat Model
	Hardware Security Architecture
	Secure Design Principles
	Least Privilege – Design Techniques
	Separation of Duties – Design Techniques
	Fail Secure – Design Techniques
	Economy of Mechanisms – Design Techniques
	Complete Mediation – Design Techniques
	Least Common Mechanisms – Design Techniques
	Psychological Acceptability – Design Techniques
	Leveraging Existing Components – Design Techniques
	Open Design – Design Techniques
	Defense in Depth – Overview
	Defense in Depth – Shortcomings
	Trade-off between IT Security Goals
	Even More Software Architecture Aspects: Cryptography
	Network Security Architecture
	Example of Failed Security Architecture
	Example of Large Security Architecture
	Outlook: Guest Lecture about Zero Trust Architectures
	References and Bibliography 1/5
	References and Bibliography 2/5
	References and Bibliography 3/5
	References and Bibliography 4/5
	References and Bibliography 5/5
	Summary
	Thank you!

