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■ Software/system architecture: mapping of the problem to software

and hardware components

■ Main components with connections of them

■ Basic, abstract, high level design

■ Security architecture

■ Definition of the basic security components

■ Security principles for building the system



AdvSecSysEng 22W | Secure ArchitecturesAdvSecSysEng 22W | Secure Architectures

Secure Architecture?

4 / 39

(See CERT Secure Coding Standards)
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Another Secure Architecture?
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(See Bodiam Castle, Chuck Andolino, CC BY-SA 2.0)
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Complexity in Real-World IT
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(See Curphey M, Arawo R. Web application security assessment tools)
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Basis for Designing Secure Systems

7 / 39

■ Defining the appropriate security requirements

■ in a suited threat model and

■ ensuring well-implemented security-mechanisms.

■ Project as a whole needs to be considered

■ Software

■ Network

■ Hardware

■ Physical Security
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Broad Goals for a Security Architecture
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■ Detect attacks

■ Resist attacks

■ React to attacks

■ Recover from attacks

(See Bass, Clements and Kazman, 2012)
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Some Details of Influences
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■ Which security properties shall the system (or specific parts of the

system) guarantee? E.g., confidentiality/anonymity,...

■ Multiple requirements from different sources/stakeholders

■ Are specific standards/regulations necessary?

■ Is a certification necessary? Which one? (e.g., Common Criteria,

PCI)

■ Which requirements conflict? What to do about it?

■ What to do if requirements change? Is there a process to recognize

that?

■ → IT Security in Large IT Infrastructures SS2023
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Principles for Secure Architectures
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■ Security requirements analysis

■ Protection requirements analysis

■ Create barricades around to be protected artifacts using different

mechanisms

■ The more important a resource is, the more security measures

■ Security architecture
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Threat Model
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■ What are the assumed capabilities of the attacker? E.g.,

■ Active vs. passive attacker

■ Physical access vs. remote access only

■ Which components of the system are

■ trusted,

■ partly trusted (e.g., distributed trust, honest-but-curious),

■ untrusted?
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Hardware Security Architecture
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■ Devices

■ PCB design and layout

■ Secure CPU, MCU:

- RAM encryption

- Tamper detection

- Secure keystore

- Secure boot

- ...

■ Data center

■ HSM (Hardware Security Modules)

■ KMS (Key Management System)
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Secure Design Principles
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■ Least Privilege

■ Separation of Duties

■ Fail Secure

■ Economy of Mechanisms

■ Complete Mediation

■ Least Common Mechanisms

■ Psychological Acceptability

■ Leveraging Existing Components

(See Jerome H. Saltzer und Michael D. Schroeder, 1975)
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Least Privilege – Design Techniques
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■ Modular Architecture:

■ Split entire system into smaller subunits

■ Each subunit is discrete with unitary functionality (cohesive)

■ Each subunit is designed to perform a set of logical operations

■ Each subunit is rather independent to others (coupling)

■ Use virtualization

■ Divide system into different network zones with defined interfaces

between the zones, e.g., DMZ

■ Best practice suggests: Designed software modules are highly

cohesive and loosely coupled
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Separation of Duties – Design Techniques
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■ When designed and implemented correctly, damage by a person or

resource is reduced

■ Separation of duties should be found in application features

(i.e., role-based access control) and software development life-cycle

(i.e., deny access for developers on production systems)

■ Example when dealing with cryptographic keys:

■ Splitting of cryptographic keys, e.g., key ceremony for exchange

of cryptographic keys

■ Best practice suggests to implement separation of duties with

auditing
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Fail Secure – Design Techniques
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■ Define secure state to get into after errors

■ Do not allow exceptions to go unhandled

■ Do not allow any exceptions to reach the GUI

■ Check, if error handlers are called frequently

(i.e. there might be a security vulnerability)
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Economy of Mechanisms – Design Techniques
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■ Avoid unnecessary functionality and unnecessary security

mechanisms

■ Strive for simplicity

■ Keep security mechanisms simple

■ Implementation should not be partial → otherwise security

issues

■ Model the data in a simple way (results in simpler validation

routines)

■ Strive for operational ease of use (e.g., SSO)
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Complete Mediation – Design Techniques
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■ Identify code paths that access privileged and sensitive resources and

secure them

■ Avoid duplicate code for input validation

■ Be aware of social engineering attacks and security unaware users

■ Keep in mind users that don’t know how to use the software
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Least Common Mechanisms – Design Techniques
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■ Design should isolate code (functions) by user roles → limits

exposure of sensitive data

■ Example:

■ Instead of sharing a function between superusers and

nonsuperusers consisting of different code paths for each party,

implement two separate functions to serve the different roles
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Psychological Acceptability – Design Techniques
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■ Applications and especially security protection mechanisms should

■ be easy to use

■ not affect accessibility

■ be transparent to the user

■ Users should not be burdened by security mechanisms

■ Example:

■ Password policy that requires min. 16 characters for passwords

may enforce users to write down their passwords and decrease

overall security
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Leveraging Existing Components – Design Techniques
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■ Promotes the reusability of existing components

■ Tier architecture is advisable

■ Software functionality can be separated into presentation,

business and data access tiers

■ Different presentation layers can be implemented

■ Reuse tested and well known concepts and patterns for the

architecture

■ Reuse components if you know them! However, be careful about the

security of existing components you don’t know
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Open Design – Design Techniques
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■ Avoid security by obscurity

■ No hard coding of sensitive information in source code or

binaries (e.g., cryptographic keys, passwords, connection

strings)

■ Use hidden form fields in web application carefully, i.e., modified

client

■ Hidden URLs for secret documents without authentication, i.e.,

google hacking

■ Use open and proven crypto systems
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■ Defense in Depth (layered defense) results from layering

■ Security controls = countermeasure to avoid / minimize security

risk and

■ Risk mitigation safeguards into software design

■ Should give an organization time to detect and respond to an attack

■ Goal is that software doesn’t get totally compromised, because of

single security breach

■ Example: it’s not good to rely on a firewall only for an

internal-use-only application

■ More important assets should have more security layers

■ Can be reactive (e.g., detect malicious activities and block them) or

preventive (e.g., awareness training, security patches)



AdvSecSysEng 22W | Secure Architectures

Defense in Depth – Shortcomings
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■ Can add complexity to the software system

■ Contradicts to the principle of simple design

■ Therefore, might introduce new risks



AdvSecSysEng 22W | Secure Architectures

Trade-off between IT Security Goals
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■ IT Security Goals

■ Confidentiality

■ Integrity

■ Availability

■ Authenticity

■ Security Goals may conflict with each other, when designing software

architecture, e.g.,
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■ IT Security Goals

■ Confidentiality

■ Integrity

■ Availability

■ Authenticity

■ Security Goals may conflict with each other, when designing software

architecture, e.g.,

■ Confidentiality vs. availability

(e.g., Encrypted data not recoverable, if key lost)

■ Availability vs. authenticity

(e.g., Slow hashing algorithms within authentication process)
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■ Cryptography

■ Where?

■ When?

■ Recovery of encrypted data when private key is lost?

■ Availability/processing speed

■ → A Catalog of Security Architecture Weaknesses (Santos, Tarrit

and Mirakhorli)
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Network Security Architecture

29 / 39

■ Connection of external sites/remote work

■ Firewalls, VPN, Honeypots, DMZ, TLS, . . .

■ Adversarial Model in a Networking Setting

■ Protection against tampering: integrity protection

■ Protection against Replay and Re-order attacks: protocol must

use, e.g., a message counter in the authenticated data, or an

authenticated nonce value with the message that must be

different for each new message

■ Protocol Downgrade Attack

- TLS versions supported by server

- HSTS
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Example of Failed Security Architecture

30 / 39

(See The Washington Post)
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Example of Large Security Architecture
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(See Gesamtarchitektur Release Version 1.5.0, gematik)
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■ Guest lecture on November 25 finalized

■ CSO of gematik

■ Implementation of Zero Trust in Complex IT Infrastructures (Current

Status of Implementation within the German Health Telematics

Infrastructure)
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■ Solid architecture is the basis of secure systems

■ IT security goals may conflict with another

■ Due to business needs decide what design principles to use

■ Balancing of different design principles is recommended

■ “Complexity is the worst enemy of security” (Schneier)
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Thank you!

https://establishing-security.at/

https://establishing-security.at/
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