Advanced Security for Systems Engineering – VO 08: Mobile Applications

Clemens Hlauschek
Christian Brem
Agenda

GSM Security
- GSM/UMTS/LTE Introduction
- Attack Overview
- IMSI Catcher Internals

Android Security
- Reversing Android Applications
- Hooking and Instrumentation
GSM Security
Secret US Spy Program

Dirtboxes on a Plane | How the Justice Department spies from the sky

1. Planes equipped with fake cellphone-tower devices or ‘dirtboxes’ can scan thousands of cellphones looking for a suspect.

2. Non-suspects’ cellphones are ‘let go’ and the dirtbox focuses on gathering information from the target.

3. The plane moves to another position to detect signal strength and location.

4. …and the system can use that information to find the suspect within three meters, or within a specific room in a building.

Source: people familiar with the operations of the program

(See Wall Street Journal – Nov 2014)
IMSI Catcher: Identify Protesters

(See https://gitlab.com/Hounge/Android-IMSI-Catcher-Detector)

These are fake mobile base stations, whose only purpose is electronic surveillance and tracking of people’s mobile phones, nearby.
IMSI Catcher / Stingray

- Researchers found 18 IMSI Catcher in Washington D.C within 2 days

Attacks:
- Location Tracking
- Call / SMS eavesdropping
- MitM against data link
- SMS injection
IMSI Catcher: Low Cost

- Attacks can be launched by anyone nowadays
- Huge security and privacy problem!
- Starting 1000 EUR for HW-Equipment
- OpenSource projects:
 - Osmocon OpenBSC
 - OpenBTS
 - OpenLTE
 - srsLTE
Deliver Spam:

- IMSI Catcher concealed in car, drive through city
- Spammers injected 6000 messages in half an hour
- Charged 1.000 Yuan (142 EUR) per 1000 users
- Attack vulnerable UICC / Baseband firmware / …
- Reconfigure phone – permanent MitM via Access Point Name (APN) change
- Intercept 2-factor auth (mTan)
History of 3GPP Networks and Main Security Issues

- 2G/GSM since 1991, GPRS
 - Location privacy
 - No mutual authentication
 - Weak encryption: A5/1, A5/2
- 3G/UMTS since 2001
 - Location privacy
 - Mutual authentication / strong encryption but
 - Downgrade to 2G often possible
History of 3GPP Networks and Main Security Issues

- 4G/LTE, deployment started: 2009
 - Security problems of 3G mostly not solved
 - Mainly performance improvements
- 5G, deployment started: 2019
 - Better privacy (encrypted SUPI/IMSI)
3GPP Networks: Main Security Issues

- 2G backward compatibility will remain for some time
- Devices always connect to base station with strongest signal
- Base station decides protocol version / encryption
- Core Network (Switching, SS7): No authentication
 - Query encryption key (2G,3G)
 - Inject spoofed SMS
 - Reroute and eavesdrop on calls
 - Track subscribers worldwide
- Large-Scale DoS attacks
 - Race condition: Pageing requests
- Femtocells: Cheap MitM attacks for 3g/4g
Structure of a GSM network

- ME: Mobile Equipment (MT/TE)
- SIM UICC
- MS: Mobile Station
- BTS: Base Transceiver Station
- BSC: Base Station Controller
- GERAN: GSM EDGE Radio Access Network
- BSS: Base Station System
- AN: Access Network
- CS: Circuit Switched
- GMSC
- SGSN
- GPRS PS: Packet Switched
- GGSN
-MGW
- MSC server
- PSTN
- VLR
- HSS
- HLR
- AuC
- EIR
- SMS-GMSC PS & CS
- CN: Core Network
- Internet
Mobile Station (MS)

- Universal Integrated Circuit Card (UICC)
 - Secure Smart Card
 - Contains Subscriber Identity Module (SIM/USIM)
 - Often: Javacard: Install additional applets (EMV Payment, Ticketing)
- Mobile Termination (MT):
 - Handles radio transmission, signaling, etc.
 - Smartphone: runs on baseband processor (≠ app cpu)
Base Station System (BSS)

- Handles all (server-side) radio communication
- Base Transceiver Station (BTS) – 2g, Node B – 3g
 - handles radio communication
- Base Station Controller (BSC) – 2g, Radio Network Controller (RNC) – 3g
 - Controls ≥ 1 BTS
 - Terminates Link encryption
Base Station System (BSS)

- **Base Station Controller (BSC)** – 2g, Radio Network Controller (RNC) – 3g
 - Connect (SS7 signaling) to Core Network / Network Switching Subsystem
- Calls via Media Gateway (MGW) to circuit switched Mobile Switching Center (MSC)
- Data / SMS via Serving GRPRS Support Node (GGSN) to packet switched network
Core Network (CN)

- Mobile Switching Center (MSC) routes calls to other MSCs; to the Public Switched Telephone Network
- GPRS Support Node (GSN) routes data to the Internet / SMS to Short Message Service Center (SMSC)
Core Network (CN)

- Visitor Location Register (VLR)
 - In serving network
 - Keeps track of currently connected MS

- Home Location Register (HLR)
 - In subscriber’s home network
 - Keeps track of current location of subscribers
Core Network (CN)

- Home Location Register (HLR)
 - Provides authentication data / link encryption key to serving network via Authentication Center (AuC)

- Authentication Center (AuC)
 - Holds shared secret K_i for each SIM
 - Generates authentication data and link encryption key for each session
Core Network (CN)

- **Equipment Identity Register (EIR)**
 - Holds globally unique identifiers of stolen, banned, or defective mobile phones
- **Unique identifier of MS devices: International Mobile Station Equipment Identity (IMEI)**
 - Globally synchronized database
SIM / USIM application on UICC contains

- Shared secret K_i (with AuC)
- International Mobile Subscriber Identifier (IMSI)
 - Needed to look up K_i, calculate auth data and session key
- Temporary Mobile Subscriber Identifier (TMSI)
 - Stored at VLR together with IMSI
 - Mask IMSI against passive eavesdropping attacks: limited location privacy
Authentication in 2G/3G

1. **Identity Request**
 - IMSI

2. **RAND, SQN, AUTHN**
 - XRES'
 - Security mode command
 - MAC (allowed crypto, security cap)
 - check MAC

3. **RAND, SQN, Key, AUTHN**
 - XRES == XRES'
 - Keys
 - MAC (allowed crypto, security cap)

4. **SERVING NETWORK**
 - VLR

5. **HOME NETWORK**
 - HLR
 - AuC

Key = f(Ki, RAND)
XRES = g(Ki, RAND)
AUTHN = h(Ki, SQN, RAND)

3G only
IMSI CAtChChIng: Location Tracking

Two different location privacy attacks

- \textbf{Monitoring:} Retrieve identities at a location
- \textbf{Tracking:} Retrieve a person’s location
 - Network of Antennas
 - Triangulation

Furthmore:

- \textbf{Passive} Attack: Limited Protection from TMSI (does not change often)
- \textbf{Active} Attack: Send Identity Request Message. (Prior to authentication)
MitM via 3g to 2g Downgrade

First phase

- Attacker impersonates phone
- Attacker queries currently valid authentication data
- Obtains (RAND, SEQ, AUTHN)

Second phase:

- Attacker impersonates serving network (2g)
- Attacker sends (RAND, SEQ, AUTHN) to phone
- Attacker choses no or weak encryption (A5/1, A5/2)
- A5/1, A5/2 can be broken in seconds
- Attacker establishes valid connection to network
- Attacker forwards call, sms, data; has plaintext
Conclusion Mobile Network Security

- Security GSM/UMTS/LTE completely broken
- Always use end-to-end encryption for sensitive information
 - TLS Certificate Pinning
 - Signal
- Beware 2-factor Authentication via SMS (mTan, etc)
- SS7 attacks can be launched from anywhere with modest budget
Android Security
Reversing Engineering Android/Java

- Java/Android decompilers
 - Easily available and mostly free
 - Source close to original
- Client side code is not protected by itself

- Why?
 - Improving applications
 - Make it fit for other use cases
 - Want to know what is running on your devices
 - It is fun
Basic Tools

- **Smali/baksmali**
 - Assembler/disassembler (language) for Android
 - Easy to modify

- **Apktool**
 - Disassemble apks to smali
 - Assembling yields valid apk again

- **Decompilers (jadx, Bytecode Viewer, . . .)**
 - DEcompile jars and apks to Java
 - Rarely complete decompilation, still useful for understanding logic
Other Techniques

- Hooking, instrumentation, and debugging at run time
- Sniffing network traffic
 - Bypass transport layer protection
 - Harder with Certificate Pinning
- File I/O
- API and system calls
- Log messages, debug output
Why Obfuscate?

- Complicate reverse engineering and exploiting
- Digital Rights Management
- Protect intellectual property (algorithms, data, ...) especially on client devices
- Certification
Basic Obfuscation Techniques

1. Identifier Remapping
2. Literal Encryption
3. Code Encryption/Packers
4. Noise/Dead Code

- ProGuard does 1., third party software for others
Identifier Remapping

```
class ExampleClass {
    String greet(String person) {
        return "Hello " + person;
    }
}
```

```
class a {
    String b(String c) {
        return "Hello " + c;
    }
}
```

- Used as optimization not obfuscation by ProGuard
- Usage patterns, signature, and code structure preserved
Literal Encryption

class a {
 String b(String c) {
 return "Hello " + c;
 }
}

class a {
 String b(String c) {
 return d("REDAc ") + c;
 }
}

- Decryption key stored somewhere
- Literals decrypted at run time
Packers

- Compile time: Code is encrypted and replaced by Unpacker
- Run time: Unpacker loads encrypted code, decrypts and runs it
- Off-the-shelf decompilers will not work
- Decryption key stored somewhere
- Code decrypted at run time
Noise/Dead Code

- Instructions not effecting outcome and behaviour
- Unused code paths
- Unused variables
- Arbitrarily complex
- Beware of side effects

- Reverse engineers must distinguish signal from noise first
Debugging vs. Instrumentation

- **Debugging**
 - Debugger attaches to running program
 - Break on instructions
 - Read registers, memory, . . .

- **Instrumentation**
 - Instrumentation engine injected into running program
 - Read registers, memory, . . .
 - Run arbitrary code at arbitrary location
Instrumentation > Debugging

- Debugging functionality can be simulated with Instrumentation
- Additionally:
 - Change existing code dynamically
 - Dump and follow traces
 - Change method calls, parameters, jumps, ...
Ideas

- Skip password check
- Dump memory at runtime
- Change cryptographic material
- Read and change network traffic
- Circumvent obfuscation
Frida

- Dynamic Binary Instrumentation (DBI) framework
- Windows, Mac, Linux, Android, iOS, QNX
- Scriptable with JavaScript

FRIDA

https://frida.re/
Literature / Links

- Meyer (2004): A Man-in-the-Middle Attack on UMTS
- Wehrle (2009): Open Source IMSI Catcher (Masterarbeit)
- Weinmann (2012): Baseband Attacks (WOOT’12)
- Dabrowski (2014): IMSI-Catch Me If You Can (ACSAC’14)
- Broek (2015): Defeating IMSI Catchers (CCS’15)
- Golde (2012): Weaponizing Femtocells (NDSS’12)
- Jover (2019). The current state of affairs in 5G security and the main remaining security challenges (arXiv)
The vector drawings in slide 32-39 are licensed under GPLv3, the sources are available at https://security.inso.tuwien.ac.at/downloads/ws19/advsecsyseng/gsmstructure/
Thank’s for your attention!

https://security.inso.tuwien.ac.at/